In an upper-division interdisciplinary laboratory experiment, students use Raman spectroscopy to highlight how the overall structure and conformational order of lipid bilayers can be influenced by their individual phospholipid composition. Students prepare a supported lipid bilayer, as a model cell membrane, by spreading liposomes made of various phospholipids on a solid support. The characterization of phospholipid bilayers, a major component of cellular membranes, can advance our fundamental understanding of important biological phenomena, with significant implications in various fields including drug delivery and development. We use Raman spectroscopy as an analytical tool to investigate the structural and packing properties of model cell membranes. The spectral frequency, intensity, and line-width of lipid Raman bands are extremely sensitive to structural alterations. This experimental module effectively exposes students to the fundamentals of Raman spectroscopy and teaches students the importance of interdisciplinary education as they integrate concepts from chemical structure, molecular interactions, and analytical spectroscopic techniques to gain a more holistic understanding of biological membrane properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmb.21603 | DOI Listing |
Nanotechnology
January 2025
Xi'an Jiaotong University, xian ning west road 28#, xi'an, Xi'an, None Selected, 710049, CHINA.
Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.
The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!