Modeling and simulation has become an invaluable partner in development of nanopore sensing systems. The key advantage of the nanopore sensing method - the ability to rapidly detect individual biomolecules as a transient reduction of the ionic current flowing through the nanopore - is also its key deficiency, as the current signal itself rarely provides direct information about the chemical structure of the biomolecule. Complementing experimental calibration of the nanopore sensor readout, coarse-grained and all-atom molecular dynamics simulations have been used extensively to characterize the nanopore translocation process and to connect the microscopic events taking place inside the nanopore to the experimentally measured ionic current blockades. Traditional coarse-grained simulations, however, lack the precision needed to predict ionic current blockades with atomic resolution whereas traditional all-atom simulations are limited by the length and time scales amenable to the method. Here, we describe a multi-resolution framework for modeling electric field-driven passage of DNA molecules and nanostructures through to-scale models of synthetic nanopore systems. We illustrate the method by simulating translocation of double-stranded DNA through a solid-state nanopore and a micron-scale slit, capture and translocation of single-stranded DNA in a double nanopore system, and modeling ionic current readout from a DNA origami nanostructure passage through a nanocapillary. We expect our multi-resolution simulation framework to aid development of the nanopore field by providing accurate, to-scale modeling capability to research laboratories that do not have access to leadership supercomputer facilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855663PMC
http://dx.doi.org/10.1039/d1cp04589jDOI Listing

Publication Analysis

Top Keywords

ionic current
16
nanopore
10
multi-resolution simulation
8
development nanopore
8
nanopore sensing
8
current blockades
8
dna
5
current
5
simulation dna
4
dna transport
4

Similar Publications

Carving Metal-Organic-Framework Glass Based Solid-State Electrolyte Via a Top-Down Strategy for Lithium-Metal Battery.

Angew Chem Int Ed Engl

January 2025

KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.

Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.

View Article and Find Full Text PDF

Using Energetic Information Quantities from Density Functional Theory to Simultaneously Identify Both Covalent and Noncovalent Interactions.

Chemphyschem

January 2025

University of North Carolina, Research Computing Center, 211 Manning Drive, 27599-3420, Chapel Hill, UNITED STATES OF AMERICA.

Covalent bonding and noncovalent interactions are important chemical concepts and how to identify them has been of current interest in the literature. Within the framework of density functional theory (DFT), we recently proposed a few qualitative descriptors to categorize different types of interactions with Pauli energy and its derivatives. In this work, we expand the scope by including the quantities derived from energetic information, which were recently proposed and thoroughly investigated by us from the framework of information-theoretic approach (ITA) in DFT.

View Article and Find Full Text PDF

The poor reversibility of the zinc anode caused by interfacial side reactions and dendritic growth poses significant constraints on the practical application of aqueous zinc-ion batteries. Herein, a co-solute, acesulfame potassium, with strongly polar, zincophilic guest anions is introduced into a conventional low-concentration aqueous electrolyte. This regulation enhances the electrolyte's ionic conductivity and accelerates the desolvation process of zinc ions at the electrode/electrolyte interface.

View Article and Find Full Text PDF

Li-CO2 batteries demonstrate promising prospects in terms of high-density energy storage and efficient CO2 fixation. However, their practical application is impeded by sluggish reaction kinetics and leakage of volatile and flammable organic electrolytes, especially for high temperature application scenarios, leading to large polarization and limited cycling stability. Herein, we fabricate a highly rechargeable and stable Li-CO2 battery with high temperature adaptability by employing fluorine-substituted graphdiyne (FGDY) as cathode catalysts and imidazolium-based ionic liquid as electrolyte solvents.

View Article and Find Full Text PDF

Green extraction and IC analysis of trace impurities in TATB through deep eutectic solvents.

J Chromatogr A

January 2025

School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, PR China. Electronic address:

1,3,5-trinamino-2,4,6-trinitrobenzene (TATB) as an important insensitive high explosive has excellent safety performance due to strong hydrogen bonds. Ionic impurities including sulfate ions (SO), nitrate ions (NO) and chloride ions (Cl) formed during the preparation of TATB have negative effects on TATB-based explosives. However, strong hydrogen bonds result in extremely low solubility of TATB in traditional solvents, which poses a huge obstacle to extract and detect the impurities in TATB for quality control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!