This study aimed to validate and reanalyze urinary biomarkers for detecting colorectal cancers (CRCs). We previously conducted urinary metabolomic analyses using capillary electrophoresis-mass spectrometry and found a significant difference in various metabolites, especially polyamines, between patients with CRC and healthy controls (HC). We analyzed additional samples and confirmed consistency between the newly and previously analyzed data. In total, we included 36 HC, 34 adenoma (AD), and 214 CRC samples, which were used for subsequent analyses. Among the 132 quantified metabolites, 16 exhibited consistent differences in both datasets, which included polyamines, etc. Pathway analyses of the integrated data revealed significant differences in many metabolites, such as glutamine, and metabolites of the TCA (tricarboxylic acid cycle) and urea cycles. The discrimination ability of the combination of multiple metabolites among the three groups was evaluated, which yielded higher sensitivity than tumor markers. The Mann-Whitney test was employed to evaluate the prognosis predictivity of the assessed metabolites and the difference between the patients with or without recurrence, which yielded 16 significantly different metabolites. Among these 16 metabolites, 11 presented significant prognosis predictivity. These data indicated the potential of metabolite-based discrimination of patients with CRC and AD from HC and prognosis predictivity of the monitored metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779129PMC
http://dx.doi.org/10.3390/metabo12010059DOI Listing

Publication Analysis

Top Keywords

prognosis predictivity
12
metabolites
9
capillary electrophoresis-mass
8
electrophoresis-mass spectrometry
8
patients crc
8
validation urinary
4
urinary charged
4
charged metabolite
4
metabolite profiles
4
profiles colorectal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!