The banana mild mosaic virus (BanMMV) (Betaflexiviridae, Quinvirinae, unassigned species) is a filamentous virus that infects spp. and has a very wide geographical distribution. The current BanMMV indexing process for an accession requires the testing of no less than four plants cultivated in a greenhouse for at least 6 months and causes a significant delay for the distribution of the germplasm. We evaluated the sensitivity of different protocols for BanMMV detection from in vitro plants to accelerate the testing process. We first used corm tissues from 137 in vitro plants and obtained a diagnostic sensitivity (DSE) of only 61% when testing four plants per accession. After thermotherapy was carried out to eliminate BanMMV infection, the meristem was recovered and further grown in vitro. The same protocol was evaluated in parallel on the corm tissue surrounding the meristem, as a rapid screening to evaluate virus therapy success, and was compared to the results obtained following the standard protocol. The obtained results showed 28% false negatives when conducting testing from corm tissues, making this protocol unsuitable in routine processes. Furthermore, RT-PCR and high-throughput sequencing (HTS) tests were applied on tissues from the base ( = 39) and the leaves ( = 36). For RT-PCR, the average DSE per sample reached 65% from either the base or leaves. HTS was applied on 36 samples and yielded 100% diagnostic specificity (DSP) and 100% DSE, whatever the sampled tissue, allowing the identification of a new Betaflexiviridae species infecting . These results suggest that a reliable diagnostic of BanMMV from in vitro plants using RT-PCR or HTS technologies might represent an efficient alternative for testing after greenhouse cultivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777661PMC
http://dx.doi.org/10.3390/plants11020226DOI Listing

Publication Analysis

Top Keywords

vitro plants
16
banana mild
8
mild mosaic
8
mosaic virus
8
high-throughput sequencing
8
diagnostic sensitivity
8
betaflexiviridae species
8
testing plants
8
corm tissues
8
base leaves
8

Similar Publications

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

In the leucine (Leu) biosynthesis pathway, homeostasis is achieved through a feedback regulatory mechanism facilitated by the binding of the end-product Leu at the C-terminal regulatory domain of the first committed enzyme, isopropylmalate synthase (IPMS). In vitro studies have shown that removing the regulatory domain abolishes the feedback regulation on plant IPMS while retaining its catalytic activity. However, the physiological consequences and underlying molecular regulation on Leu flux upon removing the IPMS C-terminal domain remain to be explored in plants.

View Article and Find Full Text PDF

Basil, Ocimum basilicum L., is a widely cultivated aromatic herb, prized for its culinary and medicinal uses, predominantly owing to its unique aroma, primarily determined by eugenol for Genovese cultivars or methyl chavicol for Thai cultivars. To date, a comprehensive basil reference genome has been lacking, with only a fragmented draft available.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!