Aspartate is the most critical amino acid in the aspartate metabolic pathway, which is associated with multiple metabolic pathways, such as protein synthesis, nucleotide metabolism, TCA cycle, glycolysis, and hormone biosynthesis. Aspartate also plays an important role in plant resistance to abiotic stress, such as cold stress, drought stress, salt stress or heavy metal stress. This study found that the chlorophyll content and antioxidant active enzyme content (SOD, CAT, POD and APX) of perennial ryegrass treated with 2 mM aspartate were significantly higher than those treated with water under heat stress. The electrolyte leakage rate, MDA content and peroxide levels (O and HO) of perennial ryegrass treated with aspartate were significantly lower than those of perennial ryegrass treated with water, indicating that exogenous aspartate increases the content of chlorophyll, maintain the integrity of cell membrane system, and enhances SOD-CAT antioxidant pathway to eliminate the oxidative damage caused by ROS in perennial ryegrass under heat stress. Furthermore, exogenous aspartate could enhance the TCA cycle, the metabolism of the amino acids related to the TCA cycle, and pyrimidine metabolism to enhance the heat tolerance of perennial ryegrass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778985PMC
http://dx.doi.org/10.3390/plants11020199DOI Listing

Publication Analysis

Top Keywords

perennial ryegrass
24
heat stress
12
tca cycle
12
ryegrass treated
12
stress
8
tolerance perennial
8
treated aspartate
8
treated water
8
exogenous aspartate
8
aspartate
7

Similar Publications

Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.

View Article and Find Full Text PDF

Effects of Concentrate Feed Starch Source Offered Twice a Day on Feed Intake and Milk Production of Cows During the Early Postpartum Period.

Animals (Basel)

December 2024

Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.

This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.

View Article and Find Full Text PDF

Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass.

BMC Plant Biol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China.

Article Synopsis
  • Perennial ryegrass exhibits varying levels of salt tolerance, with genotype P1 identified as salt-sensitive and genotype P2 as salt-tolerant when exposed to 200 mM NaCl.
  • Through transcriptomics and metabolomics analyses, researchers found 5,728 differentially expressed genes (DEGs) in response to salt stress, highlighting key genes and pathways that contribute to salt tolerance, such as antioxidant enzyme genes and metabolic pathways related to secondary metabolite biosynthesis.
  • The study underscores the prominence of the phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass, particularly in genotype P2, which showed higher levels of beneficial compounds like flavonoids and anthocyanins.
View Article and Find Full Text PDF

Greenhouse gas (GHG) emissions from livestock ruminants, particularly methane (CH), nitrous oxide, and indirectly ammonia (NH) significantly contribute to climate change and global warming. Conventional monoculture swards for cattle feeding, such as perennial ryegrass or Italian ryegrass, usually require substantial fertiliser inputs. Such management elevates soil mineral nitrogen levels, resulting in GHG emissions and potential water contamination.

View Article and Find Full Text PDF

The aim of this study was to examine how silages from different grassland species and harvesting frequencies affect feed intake, milk production, and methane (CH) emission in dairy cows. We hypothesized that cows consuming silages of more frequent harvest, grass species with greater organic matter digestibility and legumes with lower NDFom concentration would have greater silage dry matter intake and milk yield and thereby lower CH yield and intensity. Forty Norwegian Red cows were allocated to 5 treatments in a cyclic changeover design with 4 21-d periods (14 d of adaptation, 7 d of data collection).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!