AI Article Synopsis

  • Western Siberia is a significant region for spring wheat in Russia, where a study analyzed the macro- and microelement concentrations across different wheat genetic groups including CIMMYT, Japanese, US hard red spring wheat, and KASIB materials.
  • The research, conducted at Omsk State Agrarian University over two years, found positive correlations between protein content and the concentrations of several elements, utilizing multiple regression to assess phenotypic variation and genetic potential for enhancement.
  • Key findings highlighted that trace elements like Sr, Mo, and Co are easier to enhance through breeding, while important elements like Mn and Zn proved more challenging to increase genetically, with CIMMYT and Japanese synthetics showing notably higher concentrations of specific beneficial elements.

Article Abstract

Western Siberia is one of the major spring wheat regions of Russia, cultivating over 7 Mha. The objective of the study was to evaluate the variation of macro- and microelements, and of trace metals in four distinct groups of genetic resources: primary synthetics from CIMMYT (37 entries), primary synthetics from Japan (8), US hard red spring wheat cultivars (14), and material from the Kazakhstan-Siberian Network on Spring Wheat Improvement (KASIB) (74). The experiment was conducted at Omsk State Agrarian University, using a random complete block design with four replicates in 2017 and 2018. Concentrations of 15 elements were included in the analysis: macroelements, Ca, K, Mg, P, and S; microelements, Fe, Cu, Mn, and Zn; toxic trace elements, Cd, Co, Ni; and trace elements, Mo, Rb, and Sr. Protein content was found to be positively correlated with the concentrations of 11 of the elements in one or both years. Multiple regression was used to adjust the concentration of each element, based on significant correlations with agronomic traits and macroelements. All 15 elements were evaluated for their suitability for genetic enhancement, considering phenotypic variation, their share of the genetic component in this variation, as well as the dependence of the element concentration on other traits. Three trace elements (Sr, Mo, and Co) were identified as traits that were relatively easy to enhance through breeding. These were followed by Ca, Cd, Rb, and K. The important biofortification elements Mn and Zn were among the traits that were difficult to enhance genetically. The CIMMYT and Japanese synthetics had significantly higher concentrations of K and Sr, compared to the local check. The Japanese synthetics also had the highest concentrations of Ca, S, Cd, and Mo. The US cultivars had concentrations of Ca as high as the Japanese synthetics, and the highest concentrations of Mg and Fe. KASIB's germplasm had near-average values for most elements. Superior germplasm, with high macro- and microelement concentrations and low trace-element concentrations, was found in all groups of material included.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778206PMC
http://dx.doi.org/10.3390/plants11020149DOI Listing

Publication Analysis

Top Keywords

spring wheat
16
trace elements
12
japanese synthetics
12
variation macro-
8
macro- microelements
8
microelements trace
8
trace metals
8
genetic resources
8
primary synthetics
8
concentrations
8

Similar Publications

Evaluation of resistance and molecular detection of resistance genes to wheat stripe rust of 82 wheat cultivars in Xinjiang, China.

Sci Rep

December 2024

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.

Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.

View Article and Find Full Text PDF

f. sp. Exhibited a Significant Change in Virulence and Race Frequency in Xinjiang, China.

J Fungi (Basel)

December 2024

Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China.

Xinjiang is an important region due to its unique epidemic characteristics of wheat stripe rust disease caused by f. sp. .

View Article and Find Full Text PDF

To analyze the emission characteristics of VOCs from pesticide use sources in Beijing, the distribution of commonly used pesticides and dosage forms in Beijing was obtained through on-site research, and the VOC content of pesticides in different dosage forms was examined using laboratory testing methods. The emission factors of pesticide VOCs for localized dosage forms in Beijing were established, an inventory of pesticide use source VOCs was compiled, and the spatial and temporal distribution characteristics of pesticide use source VOCs were analyzed. The results indicated that ① Pesticide dosage forms were the main factors affecting the emission of VOCs from pesticides, and when accounting for VOC emissions from pesticide sources, it is necessary to know the types of pesticides and active ingredients in the target area and obtain information on pesticide dosage forms simultaneously.

View Article and Find Full Text PDF

All terrestrial plants possess a hydrophobic cuticle in the outermost layer of their aerial organs that is composed of cutin and wax. The cuticle serves as the first barrier between the plant and the surrounding environment and plays a key role in the resistance of plants to abiotic and biotic stressors. Additionally, they are closely associated with plant growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!