Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to a global pandemic with a high spread rate and pathogenicity. Thus, with limited testing solutions, it is imperative to develop early-stage diagnostics for rapid and accurate detection of SARS-CoV-2 to contain the rapid transmission of the ongoing COVID-19 pandemic. In this regard, there remains little knowledge about the integration of the CRISPR collateral cleavage mechanism in the lateral flow assay and fluorophotometer. In the current study, we demonstrate a CRISPR/Cas12a-based collateral cleavage method for COVID-19 diagnosis using the Cas12a/crRNA complex for target recognition, reverse transcription loop-mediated isothermal amplification (RT-LAMP) for sensitivity enhancement, and a novel DNA capture probe-based lateral flow strip (LFS) or real-time fluorescence detector as the parallel system readout facility, termed CRICOLAP. Our novel approach uses a customized reporter that hybridizes an optimized complementary capture probe fixed at the test line for naked-eye result readout. The CRICOLAP system achieved ultra-sensitivity of 1 copy/µL in ~32 min by portable real-time fluorescence detection and ~60 min by LFS. Furthermore, CRICOLAP validation using 60 clinical nasopharyngeal samples previously verified with a commercial RT-PCR kit showed 97.5% and 100% sensitivity for S and N genes, respectively, and 100% specificity for both genes of SARS-CoV-2. CRICOLAP advances the CRISPR/Cas12a collateral cleavage result readout in the lateral flow assay and fluorophotometer, and it can be an alternative method for the decentralized field-deployable diagnosis of COVID-19 in remote and limited-resource locations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8773725PMC
http://dx.doi.org/10.3390/bios12010011DOI Listing

Publication Analysis

Top Keywords

lateral flow
16
flow assay
12
real-time fluorescence
12
collateral cleavage
12
portable real-time
8
assay fluorophotometer
8
result readout
8
covid-19
5
rational programming
4
programming cas12a
4

Similar Publications

Co-occurrence of multiple mycotoxins is a growing global food safety concern due to their harmful effects on humans and animals. This study developed an eco-friendly sample preparation method and an innovative multiplex microarray-based lateral flow immunoassay, using a novel portable reader for on-site simultaneous determination of five regulated mycotoxins-aflatoxin B, T-2 toxin, zearalenone, deoxynivalenol, and fumonisin B in rice. The eco-friendly and ultrafast extraction procedure utilizes a bio-based solvent.

View Article and Find Full Text PDF

Rapid detection of Pan-Avian Influenza Virus and H5, H7, H9 subtypes of Avian Influenza Virus using CRISPR/Cas13a and lateral flow assay.

Poult Sci

December 2024

Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Avian Influenza Virus (AIV) has been prevalent worldwide in recent years, resulting in substantial economic losses in the poultry industry. More importantly, AIV is capable of cross-species transmission among mammals, posing a dormant yet considerable threat to human health and safety. In this study, two rapid detection methods for AIV based on the CRISPR-Cas13a were developed.

View Article and Find Full Text PDF

At the beginning of the COVID-19 pandemic, diagnostic testing was not accessible for mildly ill or asymptomatic individuals. Military operational circumstances exclude the usage of reference laboratory tests. For that reason, at the beginning of the pandemic alternative test methods were needed in order to gain insight into the SARS-CoV-2 status of military personnel.

View Article and Find Full Text PDF

Background: Traditional methods for diagnosing onychomycosis are characterized by limited sensitivity and prolonged processing times, and heavily rely on the skill level of laboratory personnel.

Objectives: To develop a fast, simple, user-friendly, and reliable molecular assay that offers high sensitivity and specificity for the detection of common dermatophytes in nail specimens.

Methods: We developed a technique that integrates recombinase polymerase isothermal amplification with lateral flow dipstick (RPA-LFD) for the detection of pan-dermatophytes and Trichophyton rubrum, and evaluated its analytical sensitivity and specificity.

View Article and Find Full Text PDF

Impacts of lateral conductive heat flow on ground temperature and implications for permafrost modeling.

Sci Rep

December 2024

Canada Centre for Remote Sensing, Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 580 Booth Street, Ottawa, ON, K1A 0E4, Canada.

Permafrost ground temperature and its spatial distribution are usually calculated using one-dimensional models based on heat flow in the vertical direction. Here, we theoretically calculated the impacts of lateral conductive heat flow on ground temperature under equilibrium and transient conditions. The results show that lateral heat flow has strong impacts on ground temperature, especially in deep ground.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!