Ibuprofen (IBU) was a widely used NSAID (a type of nonsteroidal anti-inflammatory drug) worldwide, and many drug deliveries had been reported to enhance bioavailability. However, higher bioavailability would increase the danger of renal injury caused by oxidative stress. This study prepared IBU- polysaccharide (IBU-PSP) drug delivery system via mechanochemical method. Due to drug delivery and renal protection effect of polysaccharide (PSP), the solubility of IBU-PSP was increased 8.22 times, and the bioavailability was increased 2.52 times compared with IBU, carrageenin-induced rat paw edema test also increased. Meanwhile, short-term and long-term renal injuries induced by IBU were notable decreases. In conclusion, IBU-PSP was a multifunctional drug delivery system with superior anti-inflammatory and renal protection effects. It will benefit from developing high-efficiency NADIs preparations with safer clinical applications while providing an efficient and energy-saving technology for polysaccharide drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786252PMC
http://dx.doi.org/10.1080/10717544.2022.2026533DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
delivery system
12
polysaccharide drug
8
renal injury
8
renal protection
8
drug
7
delivery
5
renal
5
mechanochemical prepared
4
prepared ibuprofen-
4

Similar Publications

Camptothecin: a key building block in the design of anti-tumor agents.

Future Med Chem

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Gene Therapy for Glioblastoma Multiforme.

Viruses

January 2025

Surgical Neurology Branch, NINDS, NIH 10 Center Drive, Bethesda, MD 20892, USA.

Glioblastoma multiforme (GBM) is a devastating, aggressive primary brain tumor with poor patient outcomes and a five-year survival of less than 10%. Significant limitations to effective GBM treatment include poor drug delivery across the blood-brain barrier, drug resistance, and complex genetic tumor alterations. Gene therapy uses a mechanism different from other GBM therapies to reduce tumor growth and enhance antitumor immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!