The effect of spinal cord stimulation (SCS) using differential target multiplexed programming (DTMP) on proteins involved in the regulation of ion transport in spinal cord (SC) tissue of an animal model of neuropathic pain was evaluated in comparison to low rate (LR) SCS. Rats subjected to the spared nerve injury model (SNI) and implanted with a SCS lead were assigned to DTMP or LR and stimulated for 48 h. A No-SCS group received no stimulation, and a Sham group received no SNI or stimulation. Proteins in the dorsal ipsilateral quadrant of the stimulated SC were identified and quantified using mass spectrometry. Proteins significantly modulated by DTMP or LR relative to No-SCS were identified. Bioinformatic tools were used to identify proteins related to ion transport regulation. DTMP modulated a larger number of proteins than LR. More than 40 proteins significantly involved in the regulation of chloride (Cl), potassium (K), sodium (Na), or calcium (Ca) ions were identified. SNI affected proteins that promote the increase of intracellular Ca, Na, and K and decrease of intracellular Cl. DTMP modulated proteins involved in glial response to neural injury that affect Ca signaling. DTMP decreased levels of proteins related to Ca transport that may result in the reduction of intracellular Ca. Presynaptic proteins involved in GABA vesicle formation and release were upregulated by DTMP. DTMP also upregulated postsynaptic proteins involved with elevated intracellular Cl, while modulating proteins, expressed by astrocytes, that regulate postsynaptic Cl inhibition. DTMP downregulated K regulatory proteins affected by SNI that affect neuronal depolarization, and upregulated proteins that are associated with a decrease of intracellular neuronal K and astrocyte uptake of extracellular K. DTMP treatment modulated the expression of proteins with the potential to facilitate a reversal of dysregulation of ion transport and signaling associated with a model of neuropathic pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785327PMC
http://dx.doi.org/10.1177/17448069211060181DOI Listing

Publication Analysis

Top Keywords

proteins involved
24
proteins
16
spinal cord
12
model neuropathic
12
neuropathic pain
12
ion transport
12
dtmp
10
differential target
8
target multiplexed
8
cord stimulation
8

Similar Publications

The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice.

Antioxid Redox Signal

January 2025

Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of HO to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis.

View Article and Find Full Text PDF

Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

ALG5 downregulation inhibits osteogenesis and promotes adipogenesis by regulating the N-glycosylation of SLC6A9 in osteoporosis.

Cell Mol Life Sci

January 2025

Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025, Shennan Middle Road, Futian District, Shenzhen, 518033, Guangdong, China.

Osteoporosis is characterized by decreased bone mass and accumulation of adipocytes in the bone marrow. The mechanism underlying the imbalance between osteoblastogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs) remains unclear. We found that ALG5 was significantly downregulated in BMSCs from osteoporotic specimens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!