In December 2018, PulseNet, the national laboratory network for enteric disease surveillance, identified an increase in Salmonella Typhimurium isolates with an uncommon pulsed-field gel electrophoresis pattern which was previously isolated from hedgehogs. CDC, state, and local health partners interviewed patients with a questionnaire that focused on hedgehog exposures, conducted traceback of patients' hedgehog purchases, and collected hedgehog faecal pellets and environmental samples. Isolates in this outbreak were analysed using core-genome multi-locus sequence typing (cgMLST) and compared to sequence data from historic clinical isolates from a 2011-2013 outbreak of Salmonella Typhimurium illnesses linked to pet hedgehogs. Fifty-four illnesses in 23 states were identified between October 2018 and September 2019. Patients ranged from <1 to 95 years, and 65% were female. Eight patients were hospitalized. Eighty-one per cent (29/36) of patients interviewed reported contact with a hedgehog before becoming ill; of these, 21 (72%) reported owning a hedgehog. Analysis of 53 clinical, 11 hedgehog, and two hedgehog bedding isolates from this outbreak, seven hedgehog isolates obtained prior to this outbreak, and two clinical isolates from the 2011-2013 outbreak fell into three distinct groupings (37 isolates in Clade 1 [0-10 alleles], 28 isolates in Clade 2 [0-7 alleles], and eight isolates in Clade 3 [0-12 alleles]) and were collectively related within 0-31 alleles by cgMLST. Purchase information available from 20 patients showed hedgehogs were purchased from multiple breeders across nine states, a pet store, and through an online social media website; a single source of hedgehogs was not identified. This outbreak highlights the ability of genetic sequencing analysis to link historic and ongoing Salmonella illness outbreaks and demonstrates the strain of Salmonella linked to hedgehogs might continue to be a health risk to hedgehog owners unless measures are taken to prevent transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325814PMC
http://dx.doi.org/10.1111/zph.12904DOI Listing

Publication Analysis

Top Keywords

salmonella typhimurium
12
outbreak salmonella
8
linked pet
8
pet hedgehogs
8
multistate outbreak
4
typhimurium linked
4
hedgehogs united
4
united states
4
states 2018-2019
4
2018-2019 december
4

Similar Publications

Postnatal establishment of enteric metabolic, host-microbial and immune homeostasis is the result of precisely timed and tightly regulated developmental and adaptive processes. Here, we show that infection with the invasive enteropathogen Typhimurium results in accelerated maturation of the neonatal epithelium with premature appearance of antimicrobial, metabolic, developmental, and regenerative features of the adult tissue. Using conditional Myd88-deficient mice, we identify the critical contribution of immune cell-derived mediators.

View Article and Find Full Text PDF

The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.

View Article and Find Full Text PDF

An RNase III-processed sRNA coordinates sialic acid metabolism of during gut colonization.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Medical Molecular Virology (Ministry of Education / National Health Commission / Chinese Academy of Medical Sciences), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200033, China.

Sialic acids derived from colonic mucin glycans are crucial nutrients for enteric bacterial pathogens like . The uptake and utilization of sialic acid in depend on coordinated regulons, each activated by specific metabolites at the transcriptional level. However, the mechanisms enabling crosstalk among these regulatory circuits to synchronize gene expression remain poorly understood.

View Article and Find Full Text PDF

Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction.

Cells

December 2024

Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA.

Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling.

View Article and Find Full Text PDF

Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!