Aims/hypothesis: The aim of this study was to evaluate the effects of progressive resistance training (PRT) on muscle strength, intraepidermal nerve fibre density (IENFD) and motor function in individuals with type 2 diabetic polyneuropathy (DPN) and to compare potential adaptations to those of individuals with type 2 diabetes without DPN and healthy controls.

Methods: This was an assessor-blinded trial conducted at the Neurology department, Aarhus University Hospital. Adults with type 2 diabetes, with and without DPN and healthy control participants were randomised to either supervised PRT or non-PRT for 12 weeks. Allocation was concealed by a central office unrelated to the study. The co-primary outcomes were muscle strength in terms of the peak torque of the knee and ankle extensors and flexors, and IENFD. Secondary outcome measures included the 6 min walk test (6MWT), five-time sit-to-stand test (FTSST) and postural stability index obtained by static posturography.

Results: A total of 109 individuals were enrolled in three groups (type 2 diabetes with DPN [n = 42], type 2 diabetes without DPN [n = 32] and healthy control [n = 35]). PRT resulted in muscle strength gains of the knee extensors and flexors in all three groups using comparative analysis (DPN group, PRT 10.3 ± 9.6 Nm vs non-PRT -0.4 ± 8.2 Nm; non-DPN group, PRT 7.5 ± 5.8 Nm vs non-PRT 0.6 ± 8.8 Nm; healthy control group, PRT 6.3 ± 9.0 Nm vs non-PRT -0.4 ± 8.4 Nm; p<0.05, respectively). Following PRT the DPN group improved the 6MWT (PRT 34.6 ± 40.9 m vs non-PRT 2.7 ± 19.6 m; p=0.001) and the FTSST (PRT -1.5 ± 2.2 s vs non-PRT 1.5 ± 4.6 s; p=0.02). There was no change in IENFD following PRT in any of the groups.

Conclusions/interpretation: PRT improved muscle strength of the knee extensors and flexors and motor function in individuals with type 2 diabetic polyneuropathy at levels comparable with those seen in individuals with diabetes without DPN and healthy control individuals, while no effects were observed in IENFD.

Trial Registration: ClinicalTrials.gov NCT03252132 FUNDING: Research reported in this paper is part of the International Diabetic Neuropathy Consortium (IDNC) research programme, supported by a Novo Nordisk Foundation Challenge Program grant (grant no. NNF14OC0011633) and Aarhus University.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00125-021-05646-6DOI Listing

Publication Analysis

Top Keywords

type diabetes
16
diabetes dpn
16
individuals type
12
muscle strength
12
healthy control
12
prt non-prt
12
group prt
12
effects progressive
8
progressive resistance
8
resistance training
8

Similar Publications

Aims: To describe the nutritional status of people with diabetes-related foot complications and explore the association between nutrition and ulceration healing.

Methods: This retrospective cohort study included attendees of a diabetes foot service who completed a dietary questionnaire. Diet was compared to guideline recommendations and biochemical measures were recorded.

View Article and Find Full Text PDF

Type 2 diabetes: a sacrifice program handling energy surplus.

Life Metab

December 2024

Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China.

Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss.

View Article and Find Full Text PDF

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

The increased cost and morbidity associated with diabetic foot ulcers (DFUs) place a substantial strain on the entire global healthcare system. In this trial, 24 subjects with a chronic DFU, Wagner grade 1 (University of Texas grade 1A), were treated with Standard of Care (SOC) therapy and randomized, one-half to receive advanced high-purity Type-I collagen-based skin substitute (HPTC; manufactured by Encoll Corp., Fremont, CA, USA), and the other half to receive a dehydrated human amnion/chorion membrane (dHACM) or viable cryopreserved human placental membrane (vCHPM).

View Article and Find Full Text PDF

Finerenone: Will It Be a Game-changer?

Card Fail Rev

December 2024

Department of Nephrology and Renal Transplant Medicine, Max Super Speciality Hospital Saket, New Delhi, India.

Heart failure (HF) is a major contributor to hospitalisations and accounts for 7% of cardiovascular-related deaths, with patients who have chronic kidney disease and type 2 diabetes at heightened risk. Existing treatment guidelines inadequately address these comorbidities. Steroidal mineralocorticoid receptor antagonists (MRAs) are commonly used in HF with reduced ejection fraction but pose risks, such as hyperkalaemia and acute kidney injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!