The application of deep machine learning, a subfield of artificial intelligence, has become a growing area of interest in predictive medicine in recent years. The deep machine learning approach has been used to analyze imaging and radiomics and to develop models that have the potential to assist the clinicians to make an informed and guided decision that can assist to improve patient outcomes. Improved prognostication of oral squamous cell carcinoma (OSCC) will greatly benefit the clinical management of oral cancer patients. This review examines the recent development in the field of deep learning for OSCC prognostication. The search was carried out using five different databases-PubMed, Scopus, OvidMedline, Web of Science, and Institute of Electrical and Electronic Engineers (IEEE). The search was carried time from inception until 15 May 2021. There were 34 studies that have used deep machine learning for the prognostication of OSCC. The majority of these studies used a convolutional neural network (CNN). This review showed that a range of novel imaging modalities such as computed tomography (or enhanced computed tomography) images and spectra data have shown significant applicability to improve OSCC outcomes. The average specificity, sensitivity, area under receiving operating characteristics curve [AUC]), and accuracy for studies that used spectra data were 0.97, 0.99, 0.96, and 96.6%, respectively. Conversely, the corresponding average values for these parameters for computed tomography images were 0.84, 0.81, 0.967, and 81.8%, respectively. Ethical concerns such as privacy and confidentiality, data and model bias, peer disagreement, responsibility gap, patient-clinician relationship, and patient autonomy have limited the widespread adoption of these models in daily clinical practices. The accumulated evidence indicates that deep machine learning models have great potential in the prognostication of OSCC. This approach offers a more generic model that requires less data engineering with improved accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757862PMC
http://dx.doi.org/10.3389/froh.2021.686863DOI Listing

Publication Analysis

Top Keywords

deep machine
20
machine learning
20
computed tomography
12
learning prognostication
8
prognostication oral
8
oral squamous
8
squamous cell
8
search carried
8
prognostication oscc
8
tomography images
8

Similar Publications

Rapid and accurate multi-phenotype imputation for millions of individuals.

Nat Commun

January 2025

Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs & Fisheries college, Jimei University, Xiamen, Fujian, People's Republic of China.

Deep phenotyping can enhance the power of genetic analysis, including genome-wide association studies (GWAS), but the occurrence of missing phenotypes compromises the potential of such resources. Although many phenotypic imputation methods have been developed, the accurate imputation of millions of individuals remains challenging. In the present study, we have developed a multi-phenotype imputation method based on mixed fast random forest (PIXANT) by leveraging efficient machine learning (ML)-based algorithms.

View Article and Find Full Text PDF

Drug repositioning for Parkinson's disease: an emphasis on artificial intelligence approaches.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Parkinson's disease (PD) is one of the most incapacitating neurodegenerative diseases (NDDs). PD is the second most common NDD worldwide which affects approximately 1 to 2 percent of people over 65 years. It is an attractive pursuit for artificial intelligence (AI) to contribute to and evolve PD treatments through drug repositioning by repurposing existing drugs, shelved drugs, or even candidates that do not meet the criteria for clinical trials.

View Article and Find Full Text PDF

Predicting the likelihood of readmission in patients with ischemic stroke: An explainable machine learning approach using common data model data.

Int J Med Inform

December 2024

Department of Health Policy and Management, School of Medicine, Kangwon National University, 510 School of Medicine Building #1 (N414), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Preventive Medicine, Kangwon National University Hospital, 156 Baengnyeong-ro, Chuncheon-si, Gangwon-do 24289, Republic of Korea; Team of Public Medical Policy Development, Gangwon State Research Institute for People's Health, 880 Baksa-ro, Seo-myeon, Chuncheon-si, Gangwon-do 24461, Republic of Korea. Electronic address:

Background: Ischemic stroke affects 15 million people worldwide, causing five million deaths annually. Despite declining mortality rates, stroke incidence and readmission risks remain high, highlighting the need for preventing readmission to improve the quality of life of survivors. This study developed a machine-learning model to predict 90-day stroke readmission using electronic medical records converted to the common data model (CDM) from the Regional Accountable Care Hospital in Gangwon state in South Korea.

View Article and Find Full Text PDF

The abiologically and biologically driving effects on organic matter in marginal seas revealed by deep learning-assisted model analysis.

Sci Total Environ

January 2025

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).

View Article and Find Full Text PDF

Analyzing the TotalSegmentator for facial feature removal in head CT scans.

Radiography (Lond)

January 2025

Department of Radiology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany.

Background: Facial recognition technology in medical imaging, particularly with head scans, poses privacy risks due to identifiable facial features. This study evaluates the use of facial recognition software in identifying facial features from head CT scans and explores a defacing pipeline using TotalSegmentator to reduce re-identification risks while preserving data integrity for research.

Methods: 1404 high-quality renderings from the UCLH EIT Stroke dataset, both with and without defacing were analysed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!