Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain.

Front Med Technol

Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.

Published: November 2020

Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8757841PMC
http://dx.doi.org/10.3389/fmedt.2020.602236DOI Listing

Publication Analysis

Top Keywords

plasmid dna
20
trojan horse
12
brain delivery
8
gene therapy
8
therapy brain
8
dna engineered
8
brain
6
plasmid
5
dna
5
gene
5

Similar Publications

Functional genomic approaches have been effective at uncovering the function of uncharacterized genes and identifying new functions for known genes. Often these approaches rely on an in vivo screen or selection to associate genes with a phenotype of interest. These selections and screens are dependent upon the expression of proteins encoded in genomic DNA from an expression vector, such as a plasmid.

View Article and Find Full Text PDF

A developed TaqMan probe-based qPCR was used to quantify the distribution of AMDV in various tissues of infected mink and its prevalence in northern China.

Front Vet Sci

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.

Aleutian mink disease (mink plasmacytosis) is a severe immune complex-mediated condition caused by the Aleutian Mink Disease Virus (AMDV), the most significant pathogen affecting mink health in the industry. Several studies have shown that AMDV epidemics can result in millions to tens of millions of dollars in economic losses worldwide each year. In this study, we developed a TaqMan probe-based real-time PCR technology (TaqMan-qPCR) for the specific, sensitive, and reproducible detection and quantification of AMDV in mink tissues by the VP2 gene, achieving detection limits as low as 1.

View Article and Find Full Text PDF

Deciphering the complex molecular architecture of the genetically modified soybean FG72 through paired-end whole genome sequencing.

Food Chem (Oxf)

June 2025

Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.

The clear molecular characterization of genetically modified (GM) plants and animals is a prerequisite for obtaining regulatory approval and safety certification for commercial cultivation. This characterization includes the identification of the transferred DNA (T-DNA) insertion site, its flanking sequences, the copy number of inserted genes, and the detection of any unintended genomic alterations accompanying the transformation process. In this study, we performed a comprehensive molecular characterization of the well-known GM soybean event FG72 using paired-end whole-genome sequencing (PE-WGS).

View Article and Find Full Text PDF

L-valine holds wide-ranging applications in medicine, food, feed, and various industrial sectors. Escherichia coli, a pivotal strain in industrial L-valine production, features a concise fermentation period and a well-defined genetic background. This study focuses on mismatch repair genes (mutH, mutL, mutS, and recG) and genes associated with mutagenesis (dinB, rpoS, rpoD, and recA), employing a high-glucose adaptive culture in conjunction with metabolic modifications to systematically screen for superior phenotypes.

View Article and Find Full Text PDF

A TaqMan-MGB Probe Quantitative PCR Assay Detecting Hematodinium perezi.

J Fish Dis

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute (YSFRI), Chinese Academy of Fishery Sciences (CAFS), Qingdao, Shandong, China.

Hematodinium perezi, a pathogenic dinoflagellate, is one of major epidemiological agents that lead to severe losses of cultured marine crustaceans in China. This study aimed to develop a novel, sensitive and specific detection method qualified for early surveillance and control of the disease caused by H. perezi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!