The association of circulating asymmetric dimethylarginine (ADMA) levels with cardiovascular risk and arterial stiffness has been reportedly demonstrated, although the causal involvement of ADMA in the pathogenesis of these conditions is still debated. Dimethylaminohydrolase 2 (DDAH2) is the enzyme responsible for ADMA hydrolysis in the vasculature, and carriers of the polymorphism rs9267551 C in the 5'-UTR of have been reported to have higher expression and reduced levels of serum ADMA. We genotyped rs9267551 in 633 adults of European ancestry and measured their carotid-femoral pulse wave velocity (cfPWV), the gold-standard method to estimate arterial stiffness. cfPWV resulted significantly lower in rs9267551 C allele carriers (Δ = -1.12 m/s, < 0.01) after correction for age, sex and BMI, and a univariate regression showed that the presence of rs9267551 C variant was negatively associated with cfPWV (β = -0.110, < 0.01). In a multivariable regression model, subjects carrying the rs9267551 C allele manifested significantly lower cfPWV than GG carriers (β = -0.098, = 0.01) independently from several potential confounders. We measured circulating ADMA levels in a subset of 344 subjects. A mediation analysis revealed that the effect of rs9267551 genotype on cfPWV was mediated by the variation in ADMA levels. These evidences hint that the presence of rs9267551 C allele may explain, at least in part, a reduction in vessel rigidity as measured by cfPWV, and support the attribution of a causative role to ADMA in the pathogenesis of arterial stiffness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761764 | PMC |
http://dx.doi.org/10.3389/fcvm.2021.811431 | DOI Listing |
Ann Vasc Dis
January 2025
Department of Surgery, Eniwa Midorino Clinic, Eniwa, Hokkaido, Japan.
We investigated the association between brachial-ankle pulse wave velocity (PWV) and arterial stiffness and distensibility in the aneurysmal sac of abdominal aortic aneurysm (AAA). Data from 49 patients with AAA from June 2020 to November 2022 at Tokyo Medical University Hospital were retrospectively analyzed. Brachial-ankle PWV (cm/s) was obtained via an automated oscillometric method.
View Article and Find Full Text PDFAIDS
January 2025
Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo NY.
Objective: To compare arterial stiffness between young adults with perinatally acquired HIV (YAPHIV) and young adults perinatally HIV exposed but uninfected (YAPHEU).
Design: Cross-sectional analysis of pulse wave velocity (PWV) measures among participants with echocardiography in the PHACS Cardiac Toxicity Substudy.
Methods: A total of 150 participants (95 YAPHIV, 55 YAPHEU, mean 23.
Am J Physiol Heart Circ Physiol
January 2025
Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA USA.
The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.
View Article and Find Full Text PDFLife Metab
October 2024
Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Downregulated RhoA/ROCK1/YAP/F-actin axis leads to decreased AoSMC stiffness and promotes AD formation.
View Article and Find Full Text PDFIn Vitro Model
February 2024
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Unlabelled: Neuroblastoma (NB) is a highly vascularized pediatric tumor arising from undifferentiated neural crest cells early in life, exhibiting both traditional endothelial-cell-driven vasculature and an intriguing alternative vasculature. The alternative vasculature can arise from cancer cells undergoing transdifferentiation into tumor-derived endothelial cells (TEC), a trait associated with drug resistance and tumor relapse. The lack of effective treatments targeting NB vasculature primarily arises from the challenge of establishing predictive in vitro models that faithfully replicate the alternative vasculature phenomenon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!