Background: The objective of this study was to assess the value of quantitative radiomics features in discriminating second primary lung cancers (SPLCs) from pulmonary metastases (PMs).
Methods: This retrospective study enrolled 252 malignant pulmonary nodules with histopathologically confirmed SPLCs or PMs and randomly assigned them to a training or validation cohort. Clinical data were collected from the electronic medical records system. The imaging and radiomics features of each nodule were extracted from CT images.
Results: A rad-score was generated from the training cohort using the least absolute shrinkage and selection operator regression. A clinical and radiographic model was constructed using the clinical and imaging features selected by univariate and multivariate regression. A nomogram composed of clinical-radiographic factors and a rad-score were developed to validate the discriminative ability. The rad-scores differed significantly between the SPLC and PM groups. Sixteen radiomics features and four clinical-radiographic features were selected to build the final model to differentiate between SPLCs and PMs. The comprehensive clinical radiographic-radiomics model demonstrated good discriminative capacity with an area under the curve of the receiver operating characteristic curve of 0.9421 and 0.9041 in the respective training and validation cohorts. The decision curve analysis demonstrated that the comprehensive model showed a higher clinical value than the model without the rad-score.
Conclusion: The proposed model based on clinical data, imaging features, and radiomics features could accurately discriminate SPLCs from PMs. The model thus has the potential to support clinicians in improving decision-making in a noninvasive manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761898 | PMC |
http://dx.doi.org/10.3389/fonc.2021.801213 | DOI Listing |
Radiologie (Heidelb)
January 2025
Department of Radiology, The Affiliated Hospital of Wuhan Sports University, 430079, Wuhan, China.
Objective: This study aimed to explore and evaluate a novel method for diagnosing patellar chondromalacia using radiomic features from patellar sagittal T2-weighted images (T2WI).
Methods: The experimental data included sagittal T2WI images of the patella from 40 patients with patellar chondromalacia and 40 healthy volunteers. The training set comprised 30 cases of chondromalacia and 30 healthy volunteers, while the test set included 10 cases of each.
Mol Carcinog
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
The standard therapy for locally unresectable advanced non-small cell lung cancer (NSCLC) is comprised of chemoradiotherapy (CRT) before immunotherapy (IO) consolidation. However, how to predict treatment outcomes and recognize patients that will benefit from IO remain unclear. This study aimed to identify prognostic biomarkers by integrating computed tomography (CT)-based radiomics and genomics.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Objective: To develop a machine learning-based clinical and/or radiomics model for predicting the primary site of brain metastases using multiparametric magnetic resonance imaging (MRI).
Materials And Methods: A total of 202 patients (87 males, 115 females) with 439 brain metastases were retrospectively included, divided into training sets (brain metastases of lung cancer [BMLC] = 194, brain metastases of breast cancer [BMBC] = 108, brain metastases of gastrointestinal tumor [BMGiT] = 48) and test sets (BMLC = 50, BMBC = 27, BMGiT = 12). A total of 3,404 quantitative image features were obtained through semi-automatic segmentation from MRI images (T1WI, T2WI, FLAIR, and T1-CE).
Front Oncol
January 2025
Department of Oncology, The Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China.
Objective: This meta-analysis aims to evaluate the diagnostic accuracy of magnetic resonance imaging (MRI) based radiomic features for predicting epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases.
Methods: We systematically searched PubMed, Embase, Cochrane Library, Web of Science, Scopus, Wanfang, and China National Knowledge Infrastructure (CNKI) for studies published up to April 30, 2024. We included those studies that utilized MRI-based radiomic features to detect EGFR mutations in NSCLC patients with brain metastases.
Cancer Imaging
January 2025
Department of Respiratory and Critical Care, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Background: Radiomics holds great potential for the noninvasive evaluation of EGFR-TKIs and ICIs responses, but data privacy and model robustness challenges limit its current efficacy and safety. This study aims to develop and validate an encrypted multidimensional radiomics approach to enhance the stratification and analysis of therapeutic responses.
Materials And Methods: This multicenter study incorporated various data types from 506 NSCLC patients, which underwent preprocessing through anonymization methods and were securely encrypted using the AES-CBC algorithm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!