Helical inchworming: a novel translocation mechanism for a ring ATPase.

Biophys Rev

Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, CA USA.

Published: December 2021

Ring ATPases perform a variety of tasks in the cell. Their function involves complex communication and coordination among the often identical subunits. Translocases in this group are of particular interest as they involve both chemical and mechanical actions in their operation. We study the DNA packaging motor of bacteriophage φ29, and using single-molecule optical tweezers and single-particle cryo-electron microscopy, have discovered a novel translocation mechanism for a molecular motor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8724481PMC
http://dx.doi.org/10.1007/s12551-021-00883-wDOI Listing

Publication Analysis

Top Keywords

novel translocation
8
translocation mechanism
8
helical inchworming
4
inchworming novel
4
mechanism ring
4
ring atpase
4
atpase ring
4
ring atpases
4
atpases perform
4
perform variety
4

Similar Publications

Na,K-ATPase is an electrogenic pump found in cell plasma membranes that acts as the basic unit of animal life. This enzyme is highly susceptible to cardiotonic steroid (CTS) inhibition. The role of Na,K-ATPase in signaling has introduced a novel viewpoint regarding the enzyme's function, as the ouabain-binding site is involved in several physiological processes.

View Article and Find Full Text PDF

Recombinant human haemoglobin (rHb) is a tetramer protein with heme as cofactors, which have extensive applications in the fields of biomaterials and biomedical therapeutics. However, due to the poor structural stability, the dissociation of heme, weak oxygen transport efficiency, and lower activity, the utilisation of rHb is severely limited in artificial oxygen carriers. Herein, based on the novel developed high-throughput screening strategies and semi-rational design, the engineered rHb mutant with strong stability and heme-binding ability was obtained.

View Article and Find Full Text PDF

A Self-Priming Pyroptosis-Inducing Agent for Activating Anticancer Immunity.

Adv Healthc Mater

March 2025

Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.

Pyroptosis, a form of programmed cell death mediated by the gasdermin family, has emerged as a promising strategy for inducing anti-tumor immunity. However, efficiently inducing pyroptosis in tumor cells remains a significant challenge due to the limited activation of key mediators like caspases in tumor tissues. Herein, a self-priming pyroptosis-inducing agent (MnNZ@OMV) is developed by integrating outer membrane vesicles (OMVs) with manganese dioxide nanozymes (MnNZ) to trigger pyroptosis in tumor cells.

View Article and Find Full Text PDF

FV-429 suppresses cancer cell migration and invasion by EMT via the Hippo/YAP1 pathway in pancreatic cancer cells.

Anticancer Drugs

March 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, China.

Pancreatic cancer is one of the most common malignant tumors of the digestive system, with the majority of patients not succumbing to the primary tumor but rather to metastasis. Epithelial-mesenchymal transition (EMT) is abnormally activated in numerous cancers, whereby it promotes tumor cell migration and invasion. Yes-associated protein 1 (YAP1) is commonly overexpressed in various cancer types and plays an oncogenic role.

View Article and Find Full Text PDF

Optical genome mapping (OGM) is a novel method enabling the detection of structural genomic variants. The method is based on the laser image acquisition of single, labeled, high-molecular-weight DNA molecules and can detect structural genomic variants such as translocations, inversions, insertions, deletions, duplications, and complex structural rearrangements. We aim to present our experience with OGM at the Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Slovenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!