The cyanation reaction has achieved rapid progress in recent times. The ability to exhibit multiple oxidation states increased the demand of ruthenium in the field of catalysis. These cyanation reactions have wide application in pharmacological and biological fields. This review gives an overview of the ruthenium-catalyzed cyanation reactions covering literature up to 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744463PMC
http://dx.doi.org/10.3762/bjoc.18.4DOI Listing

Publication Analysis

Top Keywords

cyanation reactions
12
ruthenium-catalyzed cyanation
8
advances perspectives
4
perspectives ruthenium-catalyzed
4
cyanation
4
reactions cyanation
4
cyanation reaction
4
reaction achieved
4
achieved rapid
4
rapid progress
4

Similar Publications

Reaction of Co(NCS) with 4-methyl-pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)(CHN)] . The asymmetric unit consists of two crystallographically independent thio-cyanate anions and two crystallographically independent 4-methyl-pyridine coligands in general positions, as well as of two different Co cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl-pyridine ligands are disordered and were refined using a split model.

View Article and Find Full Text PDF

The electrochemically mediated cyanation/annulation process with in situ cyanide ion generation from NH4SCN and multi-step oxidative construction of CN-functionalized heterocycles from easily available α-amino esters and pyridine-2-carbaldehydes has been discovered. Depending on the nature of the α-amino ester, 1-cyano-imidazo[1,5-a]pyridine-3-carboxylates, 3-alkyl- and 3-aryl-imidazo[1,5-a]pyridines-1-carbonitriles, and the first reported 4-oxo-4H-pyrido[1,2-a]pyrazine-1-carbonitriles were obtained. The electrosynthesis is carried out in an undivided electrochemical cell under constant current conditions.

View Article and Find Full Text PDF

,'-Di-benzyl-ethyl-enedi-ammonium dichloride.

Acta Crystallogr E Crystallogr Commun

October 2024

University of South Alabama, Department of Chemistry 6040 USA Drive South Mobile Alabama 36608 USA.

The isolation and crystalline structure of ,'-di-benzyl-ethyl-enedi-ammonium dichloride, CHN ·2Cl, is reported. This was obtained as an unintended product of an attempted Curtius rearrangement that involved benzyl-amine as one of the reagents and 1,2-di-chloro-ethane as the solvent. Part of a series of reactions of a course-based undergraduate research experience (CURE), this was not the intended reaction outcome.

View Article and Find Full Text PDF

TFA-catalyzed solvent-free dearomative cyanidation of isoquinoline using (Boc)O as an acylation agent.

Org Biomol Chem

December 2024

State Key Laboratory of NBC Protection for Civilian, Beijing, P.R. China.

A TFA-catalyzed dearomative cyanidation of isoquinoline is described, which provides a series of 1-cyanoisoquinolines in high yields under solvent-free conditions. This protocol is operated under mild and environmentally friendly conditions, utilizing readily available and cost-effective starting materials. The reaction features broad functional group compatibility, 100 mmol scale synthesis ability and operational simplicity, making it a significant potential approach for the synthesis of various biologically interesting isoquinolines α C-cyanation.

View Article and Find Full Text PDF

Arylethylamines represent a privileged scaffold in pharmaceutical compounds and form the backbone of many medical drugs, including those used for treating neurological diseases and pain. Their biomedical significance has inspired new synthetic methods that rely on transition metal-catalyzed aminoarylation reaction to an alkene, often in conjunction with a photoredox catalyst or a photosensitizer, and guided by a directing or stabilizing group. Here, we introduce a simple and effective method for azidoarylation of unactivated alkenes under transition metal-free conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!