Baf45a Mediated Chromatin Remodeling Promotes Transcriptional Activation for Osteogenesis and Odontogenesis.

Front Endocrinol (Lausanne)

RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama, Birmingham, AL, United States.

Published: March 2022

Chromatin remodeling, specifically the tissue-specific regulation in mineralized tissues, is an understudied avenue of gene regulation. Here we show that and , two homologs belong to ATPase-dependent SWI/SNF chromatin remodeling complex, preferentially expressed in osteoblasts and odontoblasts compared to and . Recently, biochemical studies revealed that BAF45A associates with Polybromo-associated BAF (PBAF) complex. However, the BAF45D subunit belongs to the polymorphic canonical BRG1-associated factor (cBAF) complex. Protein profiles of osteoblast and odontoblast differentiation uncovered a significant increase of BAF45A and PBAF subunits during early osteoblast and odontoblast maturation. Chromatin immunoprecipitation sequencing (ChIP-seq) during the bone marrow stromal cells (BMSCs) differentiation showed higher histone H3K9 and H3K27 acetylation modifications in the promoter of and and increased binding of bone and tooth specific transcription factor RUNX2. Overexpression of in osteoblasts activates genes essential for the progression of osteoblast maturation and mineralization. Furthermore, -mediated knockdown of in odontoblasts leads to markedly altered genes responsible for the proliferation, apoptosis, DNA repair, and modest decrease in dentinogenic marker gene expression. Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) assay in knockout osteoblasts revealed a noticeable reduction in chromatin accessibility of osteoblast and odontoblast specific genes, along with transcription factor and . Craniofacial mesenchyme-specific loss of modestly reduced the mineralization of the tooth and mandibular bone. These findings indicated that BAF45A-dependent mineralized tissue-specific chromatin remodeling through PBAF-RUNX2 crosstalk results in transcriptional activation is critical for early differentiation and matrix maturation of mineralized tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762305PMC
http://dx.doi.org/10.3389/fendo.2021.763392DOI Listing

Publication Analysis

Top Keywords

chromatin remodeling
16
osteoblast odontoblast
12
transcriptional activation
8
mineralized tissues
8
transcription factor
8
chromatin
7
baf45a mediated
4
mediated chromatin
4
remodeling
4
remodeling promotes
4

Similar Publications

NKAP: a new m6A RNA binding protein predicts prognosis and immunotherapy response in head and neck squamous cell carcinoma.

J Stomatol Oral Maxillofac Surg

January 2025

Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.

Objective: This study aimed to investigate whether NKAP (nuclear factor κB activating protein) serves as a prognostic marker and predictive biomarker for immunotherapy response in head and neck squamous cell carcinoma (HNSCC).

Methods: A retrospective cohort study combined with in vitro analyses was conducted. NKAP mRNA expression levels were assessed in 520 HNSCC tumor tissues and 44 normal tissues from the TCGA dataset and validated in a clinical cohort (n=32).

View Article and Find Full Text PDF

Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.

View Article and Find Full Text PDF

Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.

View Article and Find Full Text PDF

Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate.

View Article and Find Full Text PDF

A complex interplay between histone variants and DNA methylation.

J Exp Bot

January 2025

Institute of Plant Sciences Paris-Saclay, Centre Nationale de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Université Paris-Saclay, 91405 Orsay, France.

Nucleosomes, the chromatin building blocks, play an important role in controlling DNA and chromatin accessibility. Nucleosome remodeling and the incorporation of distinct histone variants confer unique structural and biochemical properties, influencing the targeting of multiple epigenetic pathways, particularly DNA methylation. This stable epigenetic mark suppresses transposable element expression in plants and mammals, serving as an additional layer of chromatin regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!