Endocannabinoid-Mediated Control of Neural Circuit Excitability and Epileptic Seizures.

Front Neural Circuits

Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.

Published: January 2022

AI Article Synopsis

  • Advances in endocannabinoid signaling have revealed its roles in controlling neural circuit excitability, affecting both excitatory and inhibitory synapses differently.
  • Disruptions in endocannabinoid signaling during epileptogenesis are linked to the development of spontaneous seizures in the epileptic brain.
  • Recent innovations in cannabinoid sensors and research on cannabidiol show promise for treating refractory epilepsy, highlighting its potential benefits and tolerability compared to traditional antiepileptic medications.

Article Abstract

Research on endocannabinoid signaling has greatly advanced our understanding of how the excitability of neural circuits is controlled in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses excitability by inhibiting glutamate release, while that at inhibitory synapses promotes excitability by inhibiting GABA release, although there are some exceptions in genetically epileptic animal models. In the epileptic brain, the physiological distributions of endocannabinoid signaling molecules are disrupted during epileptogenesis, contributing to the occurrence of spontaneous seizures. However, it is still unknown how endocannabinoid signaling changes during seizures and how the redistribution of endocannabinoid signaling molecules proceeds during epileptogenesis. Recent development of cannabinoid sensors has enabled us to investigate endocannabinoid signaling in much greater spatial and temporal details than before. Application of cannabinoid sensors to epilepsy research has elucidated activity-dependent changes in endocannabinoid signaling during seizures. Furthermore, recent endocannabinoid research has paved the way for the clinical use of cannabidiol for the treatment of refractory epilepsy, such as Dravet syndrome, Lennox-Gastaut syndrome and tuberous sclerosis complex. Cannabidiol significantly reduces seizures and is considered to have comparable tolerability to conventional antiepileptic drugs. In this article, we introduce recent advances in research on the roles of endocannabinoid signaling in epileptic seizures and discuss future directions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762319PMC
http://dx.doi.org/10.3389/fncir.2021.781113DOI Listing

Publication Analysis

Top Keywords

endocannabinoid signaling
32
endocannabinoid
9
epileptic seizures
8
seizures endocannabinoid
8
signaling
8
excitability inhibiting
8
signaling molecules
8
cannabinoid sensors
8
seizures
6
endocannabinoid-mediated control
4

Similar Publications

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.

View Article and Find Full Text PDF

Sex-specific alterations in emotional behavior and neurotransmitter systems in LPA receptor-deficient mice.

Neuropharmacology

January 2025

Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Plataforma BIONAND), 29590 Málaga, Spain; Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain. Electronic address:

Lysophosphatidic acid (LPA) and the endocannabinoid system (ECS) are critical lipid signaling pathways involved in emotional regulation and behavior. Despite their interconnected roles and shared metabolic pathways, the specific contributions of LPA signaling through the LPA receptor to stress-related disorders remain poorly understood. This study investigates the effects of LPA receptor deficiency on emotional behavior and neurotransmitter-related gene expression, with a focus on sex-specific differences, using maLPA-null mice of both sexes.

View Article and Find Full Text PDF

Evidence indicates a bidirectional link between depressive symptoms and neuroinflammation. This study evaluated chronic cannabidiol (CBD) treatment effects in male and female rats subjected to the unpredictable chronic mild stress (UCMS) model of depression. We analyzed the gene expression related to neuroinflammation, cannabinoid signaling, estrogen receptors, and specific microRNAs in the ventromedial prefrontal cortex (vmPFC), CA1, and ventral subiculum (VS).

View Article and Find Full Text PDF

Alterations to the excitation/inhibition (E/I) ratio are postulated to underlie behavioral phenotypes in autism spectrum disorder (ASD) patients and mouse models. However, in wild type mice the E/I ratio is not constant, but instead oscillates across the 24-h day. Therefore, we tested whether E/I regulation, rather than the overall E/I ratio, is disrupted in two ASD-related mouse lines: KO and BTBR, models of syndromic and idiopathic ASD, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!