Membranes of vacuoles, the lysosomal organelles of (budding yeast), undergo extraordinary changes during the cell's normal growth cycle. The cycle begins with a stage of rapid cell growth. Then, as glucose becomes scarce, growth slows, and vacuole membranes phase separate into micrometer-scale domains of two liquid phases. Recent studies suggest that these domains promote yeast survival by organizing membrane proteins that play key roles in a central signaling pathway conserved among eukaryotes (TORC1). An outstanding question in the field has been whether cells regulate phase transitions in response to new physical conditions and how this occurs. Here, we measure transition temperatures and find that after an increase of roughly 15 °C, vacuole membranes appear uniform, independent of growth temperature. Moreover, populations of cells grown at a single temperature regulate this transition to occur over a surprisingly narrow temperature range. Remarkably, the transition temperature scales linearly with the growth temperature, demonstrating that the cells physiologically adapt to maintain proximity to the transition. Next, we ask how yeast adjust their membranes to achieve phase separation. We isolate vacuoles from yeast during the rapid stage of growth, when their membranes do not natively exhibit domains. Ergosterol is the major sterol in yeast. We find that domains appear when ergosterol is depleted, contradicting the prevalent assumption that increases in sterol concentration generally cause membrane phase separation in vivo, but in agreement with previous studies using artificial and cell-derived membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795566 | PMC |
http://dx.doi.org/10.1073/pnas.2116007119 | DOI Listing |
Acta Biomater
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China. Electronic address:
Oral mucosal wounds are more prone to inflammation due to direct exposure to various microorganisms. This can result in pain, delayed healing, and other complications, affecting patients' daily activities such as eating and speaking. Consequently, the overall quality of life for patients is significantly reduced.
View Article and Find Full Text PDFBiophys Chem
January 2025
La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia. Electronic address:
The rapid spread of antibiotic-resistant strains of bacteria has created an urgent need for new alternative antibiotic agents. Membrane disrupting antimicrobial peptides (AMPs): short amino acid sequences with bactericidal and fungicidal activity that kill pathogens by permeabilizing their plasma membrane may offer a solution for this global health crisis. Magainin 2 is an AMP secreted by the African clawed frog (Xenopus laevis) that is described as a toroidal pore former membrane disrupting AMP.
View Article and Find Full Text PDFJ Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFClin Transl Sci
January 2025
NIMML Institute, Blacksburg, Virginia, USA.
NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.
View Article and Find Full Text PDFFoods
January 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
Dried apricots are rich in a variety of polyphenols, which have anti-cancer activity. In this study, 949 phenolic substances were found by means of UPLC-MS/MS, mainly including 2',7-dihydroxy-3',4'-dimethoxyisoflavan, scopoletin, rutin, quercetin-3-O-robinobioside, and elaidolinolenic acid. The results indicated that dried apricot polyphenols (DAPs) could cause cell cycle arrest in the G0/G1 and G2/M phases by decreasing the cyclin D1, CDK4, cyclin B1, CDK1, and CDK6 levels in A549 human lung adenocarcinoma cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!