Background: COVID-19 is an infectious disease characterized by multiple respiratory and extrapulmonary manifestations, including gastrointestinal symptoms. Although recent studies have linked gut microbiota to infectious diseases such as influenza, little is known about the role of the gut microbiota in COVID-19 pathophysiology.
Methods: To better understand the host-gut microbiota interactions in COVID-19, we characterized the gut microbial community and gut barrier function using metagenomic and metaproteomic approaches in 63 COVID-19 patients and 8 non-infected controls. Both immunohematological parameters and transcriptional profiles were measured to reflect the immune response in COVID-19 patients.
Results: Altered gut microbial composition was observed in COVID-19 patients, which was characterized by decreased commensal species and increased opportunistic pathogenic species. Severe illness was associated with higher abundance of four microbial species (i.e., Burkholderia contaminans, Bacteroides nordii, Bifidobacterium longum, and Blautia sp. CAG 257), six microbial pathways (e.g., glycolysis and fermentation), and 10 virulence genes. These severity-related microbial features were further associated with host immune response. For example, the abundance of Bu. contaminans was associated with higher levels of inflammation biomarkers and lower levels of immune cells. Furthermore, human-origin proteins identified from both blood and fecal samples suggested gut barrier dysfunction in COVID-19 patients. The circulating levels of lipopolysaccharide-binding protein increased in patients with severe illness and were associated with circulating inflammation biomarkers and immune cells. Besides, proteins of disease-related bacteria (e.g., B. longum) were detectable in blood samples from patients.
Conclusions: Our results suggest that the dysbiosis of the gut microbiome and the dysfunction of the gut barrier might play a role in the pathophysiology of COVID-19 by affecting host immune homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769945 | PMC |
http://dx.doi.org/10.1186/s12916-021-02212-0 | DOI Listing |
ACS Nano
January 2025
NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisbon 1169-056, Portugal.
The "" under this Perspective underline the importance of interdisciplinary collaboration and partnerships across several disciplines, such as medical science and technology, medicine, bioengineering, and computational approaches, in bridging the gap between research, manufacturing, and clinical applications. Effective communication is key to bridging team gaps, enhancing trust, and resolving conflicts, thereby fostering teamwork and individual growth toward shared goals. Drawing from the success of the COVID-19 vaccine development, we advocate the application of similar collaborative models in other complex health areas such as nanomedicine and biomedical engineering.
View Article and Find Full Text PDFClin Infect Dis
January 2025
Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.
Background: Existing risk evaluation tools underperform in predicting intensive care unit (ICU) admission for patients with the Coronavirus Disease 2019 (COVID-19). This study aimed to develop and evaluate an accurate and calculator-free clinical tool for predicting ICU admission at emergency room (ER) presentation.
Methods: Data from patients with COVID-19 in a nationwide German cohort (March 2020-January 2023) were analyzed.
J Bras Nefrol
January 2025
Santa Casa de Porto Alegre, Porto Alegre, RS, Brazil.
Introduction: Acute kidney injury (AKI) in the setting of COVID-19 is associated with worse clinical and renal outcomes, with limited long-term data.
Aim: To evaluate critically ill COVID-19 patients with AKI that required nephrologist consultation (NC-AKI) in a tertiary hospital.
Methods: Prospective single-center cohort of critically ill COVID-19 adult patients with NC-AKI from May 1st, 2020, to April 30th, 2021.
Medicine (Baltimore)
January 2025
Department of Gastroenterology, Mulei County People's Hospital, Mulei, China.
Rationale: Spontaneous retroperitoneal hematoma (SRH) is a rare but potentially fatal condition, often associated with anticoagulation therapy. With the global prevalence of COVID-19 and the widespread use of anticoagulants in its management, there is an increasing need to recognize rare but serious complications like SRH. This case report aims to emphasize the importance of early recognition and intervention of SRH in patients with COVID-19 undergoing anticoagulation therapy, to improve patient outcomes and reduce mortality.
View Article and Find Full Text PDFSci Adv
January 2025
Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
Measuring virus in biofluids is complicated by confounding biomolecules coisolated with viral nucleic acids. To address this, we developed an affinity-based microfluidic device for specific capture of intact severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our approach used an engineered angiotensin-converting enzyme 2 to capture intact virus from plasma and other complex biofluids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!