Understanding how cytotoxic T lymphocytes (CTLs) efficiently leave the circulation to target cancer cells or contribute to inflammation is of high medical interest. Here, we demonstrate that human central memory CTLs cross the endothelium in a predominantly paracellular fashion, whereas effector and effector memory CTLs cross the endothelium preferably in a transcellular fashion. We find that effector CTLs show a round morphology upon adhesion and induce a synapse-like interaction with the endothelium where ICAM-1 is distributed at the periphery. Moreover, the interaction of ICAM-1:β2integrin and endothelial-derived CX3CL1:CX3CR1 enables transcellular migration. Mechanistically, we find that ICAM-1 clustering recruits the SNARE-family protein SNAP23, as well as syntaxin-3 and -4, for the local release of endothelial-derived chemokines like CXCL1/8/10. In line, silencing of endothelial SNAP23 drives CTLs across the endothelium in a paracellular fashion. In conclusion, our data suggest that CTLs trigger local chemokine release from the endothelium through ICAM-1-driven signals driving transcellular migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2021.110243 | DOI Listing |
Metastasis is the leading cause of mortality in breast cancer, with lung metastasis being particularly detrimental. Identification of the processes determining metastatic organotropism could enable the development of approaches to prevent and treat breast cancer metastasis. Here, we found that lung-tropic and non-lung-tropic breast cancer cells differ in their response to sialic acids, affecting the sialylation of surface proteins.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
Despite its importance in pathogenesis, the hematogenous dissemination pathway of is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In -infected monolayers, we observed ~55% of wild-type spirochetes crossing the monolayer.
View Article and Find Full Text PDFCell
December 2024
Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA. Electronic address:
Sustained lymphocyte migration from blood into lymph nodes (LNs) is important for immune responses. The CC-chemokine receptor-7 (CCR7) ligand CCL21 is required for LN entry but is downregulated during inflammation, and it has been unclear how recruitment is maintained. Here, we show that the oxysterol biosynthetic enzyme cholesterol-25-hydroxylase (Ch25h) is upregulated in LN high endothelial venules during viral infection.
View Article and Find Full Text PDFFront Vet Sci
October 2024
Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States.
Gastrointestinal disease is a leading cause of death in mature horses. A lack of modeling has impeded the development of novel therapeutics. The objectives of this study were to develop and further characterize a small intestinal monolayer cell culture derived from equine jejunum including establishing normal measurements of intestinal permeability and restitution.
View Article and Find Full Text PDFUnlabelled: Despite its importance in pathogenesis, the hematogenous dissemination pathway of is still largely uncharacterized. To probe the molecular details of transendothelial migration more easily, we studied this process using cultured primary or telomerase-immortalized human microvascular endothelial cells in a medium that maintains both the human cells and the spirochetes. In infected monolayers we observed ∼55% of wild-type spirochetes crossing the monolayer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!