Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO42- and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO42- by sulfate-reducing bacteria (SRB), Maifan stone-sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques using Shandong Maifan stone as the experimental material. The effects of Maifan stones containing SRB on mitigating AMD were investigated by constructing Dynamic Column 1 with Maifan stone-sulfate-reducing bacterium-immobilized particles and by constructing Dynamic Column 2 with SRB mixed with Maifan stones. By the use of adsorption isotherms, adsorption kinetics, a reduction kinetics model and X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, the mechanism by which Maifan stone-sulfate-reducing bacterium-immobilized particles mitigate AMD was revealed. The results showed that the total effect of Maifan stone-sulfate-reducing bacterium-immobilized particles on AMD was better than that of biological Maifan stone carriers. The highest rates for the removal of Fe2+, Mn2+, and SO42- in AMD were 90.51%, 85.75% and 93.61%, respectively, and the pH value of the wastewater increased from 4.08 to 7.64. The isotherms for the adsorption of Fe2+ and Mn2+ on Maifan stone-sulfate-reducing bacterium-immobilized particles conformed to the output of the Langmuir model. The adsorption kinetics were in accordance with Lagergren first-order kinetics, and the kinetics for the reduction of SO42- conformed to those of a first-order reaction model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769311 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261823 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!