A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis and classification of peanuts with fungal diseases based on real-time spectral processing. | LitMetric

Analysis and classification of peanuts with fungal diseases based on real-time spectral processing.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Department of Information Security and Processing Technologies, Voronezh State University, Voronezh, Russia.

Published: May 2022

The study presents an approach to the analysis and classification of peanuts performed in order to detect kernels with fungi diseases, i.e. kernels prone to contamination with mycotoxigenic (). The aim of this study was to evaluate the effectiveness of luminescent spectroscopy with a violet laser (405 nm wavelength) as the excitation source of the fluorescence when applied for real-time detection of mould in peanuts performed by means of multispectral processing based on machine learning methods. We suggest a laboratory unit used to form, register, and process the luminescence spectra of peanuts in visible and near-infrared wavelength ranges in the real-time mode. The study demonstrated that contaminated peanuts have increased luminous intensity and show a redshift in the fluorescence peaks of the contaminated samples as compared to the pure ones. The difference in the fluorescence spectra of pure and contaminated kernels is compatible with the results obtained when traditional UV-light sources are used (365 nm). To classify peanuts by their spectral characteristics, neural network algorithms were used combined with dimensionality reduction methods. The paper presents the probabilities of incorrect recognition of the peanuts' type depending on the number of relevant secondary features determined when reducing the dimensionality of the initial data. When 10 spectral components were used, the error ratios were 0.7% or 0.3% depending on the method of reducing the dimensionality of the initial data.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2021.2017001DOI Listing

Publication Analysis

Top Keywords

analysis classification
8
classification peanuts
8
peanuts performed
8
reducing dimensionality
8
dimensionality initial
8
initial data
8
peanuts
6
peanuts fungal
4
fungal diseases
4
diseases based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!