Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study presents an approach to the analysis and classification of peanuts performed in order to detect kernels with fungi diseases, i.e. kernels prone to contamination with mycotoxigenic (). The aim of this study was to evaluate the effectiveness of luminescent spectroscopy with a violet laser (405 nm wavelength) as the excitation source of the fluorescence when applied for real-time detection of mould in peanuts performed by means of multispectral processing based on machine learning methods. We suggest a laboratory unit used to form, register, and process the luminescence spectra of peanuts in visible and near-infrared wavelength ranges in the real-time mode. The study demonstrated that contaminated peanuts have increased luminous intensity and show a redshift in the fluorescence peaks of the contaminated samples as compared to the pure ones. The difference in the fluorescence spectra of pure and contaminated kernels is compatible with the results obtained when traditional UV-light sources are used (365 nm). To classify peanuts by their spectral characteristics, neural network algorithms were used combined with dimensionality reduction methods. The paper presents the probabilities of incorrect recognition of the peanuts' type depending on the number of relevant secondary features determined when reducing the dimensionality of the initial data. When 10 spectral components were used, the error ratios were 0.7% or 0.3% depending on the method of reducing the dimensionality of the initial data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/19440049.2021.2017001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!