Ultrafast Lifetime and Bright Emission from Graphene Quantum Dots Using Plasmonic Nanogap Cavities.

Nano Lett

Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States.

Published: February 2022

Graphene quantum dots (GQDs) are quasi-zero-dimensional, carbon-based luminescent nanomaterials that possess desirable physical properties, such as high photostability, low cytotoxicity, good biocompatibility, and excellent water solubility; however, their long radiative lifetimes significantly limit their use in, e.g., light emitting devices where a fast spontaneous emission rate is essential. Despite a few reports on GQD fluorescence enhancements using metal nanostructures, studies of enhanced spontaneous emission rate remain outstanding. Here, we report fast and bright luminescence by coupling gap plasmon modes to nanoparticle emitters. Through precise control over the nanoparticle's local density of states (LDOS), we achieved a 220-fold increase in the PL intensity. The shortest radiative lifetime obtained was below 8.0 ps and limited by the instrument response, which is over 288-fold shorter than the lifetime of uncoupled GQDs. These findings may benefit the future development of rapid displays and open the possibility of constructing high-frequency classical or quantum telecommunication systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c03419DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
spontaneous emission
8
emission rate
8
ultrafast lifetime
4
lifetime bright
4
bright emission
4
emission graphene
4
dots plasmonic
4
plasmonic nanogap
4

Similar Publications

The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.

View Article and Find Full Text PDF

Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).

View Article and Find Full Text PDF

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!