Realizing Efficient Catalytic Performance and High Selectivity for Oxygen Reduction Reaction on a 2D NiSbTe Monolayer.

Inorg Chem

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.

Published: January 2022

One of the immediate challenges for the large-scale commercialization of hydrogen-based fuel cells is to develop cost-effective electrocatalysts to enable cathodic oxygen reduction reaction (ORR). Herein, we focus on the potential of the two-dimensional (2D) ternary chalcogenide NiSbTe monolayer as a high-performance electrocatalyst for the ORR using density function theory. Our computed results reveal that there are an obvious hybridization and electron transfer between the O 2p and Te 5p orbitals, which can activate the adsorbed oxygen and trigger the whole ORR process, with an overpotential as low as 0.33 V. In addition, the adsorption capacity of the monolayer surface for oxygen molecules can be effectively enhanced by doping with Fe or Co atoms. The NiSbTe monolayers doped with Fe or Co atoms not only maintain their original excellent ORR catalytic activity but also improve selectivity toward the four-electron (4e) reduction pathway. We highly anticipate that this work can provide excellent candidates and new ideas for designing low-cost and high-performance ORR catalysts to replace noble metal Pt-based catalysts in fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c03662DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
reduction reaction
8
nisbte monolayer
8
fuel cells
8
orr
5
realizing efficient
4
efficient catalytic
4
catalytic performance
4
performance high
4
high selectivity
4

Similar Publications

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

Exceptional Resistance to Chlorine-Induced Photocatalytic Poisoning via Vacuum UV Irradiation.

Environ Sci Technol

March 2025

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.

Catalyst deactivation poses a significant challenge in environmental remediation, especially for the photocatalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). In this study, a functional flower-like TiO@Mn/rGO (FTMG) catalyst coupled with a vacuum ultraviolet (VUV) lamp was used as a novel photocatalytic oxidation (VUV-PCO) system for chlorobenzene (CB) oxidation. In this system, more than 80% of CB was efficiently oxidized at a high w8 hly space velocity of 600,000 g h, which was a 6.

View Article and Find Full Text PDF

This study aimed to assess whether delivering Continuous Positive Airway Pressure (CPAP) through a Helmet interface (H-CPAP) reduces common carotid artery flow (CCAF), compared to breathing room air (RA) or using an oronasal mask (M-CPAP). This trial is an unblinded, randomized, controlled crossover trial. The primary outcome was CCAF, measured using Doppler ultrasound.

View Article and Find Full Text PDF

Diversity and Structure of the Prokaryotic Community in Tropical Monomictic Reservoir.

Microb Ecol

March 2025

Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de Mexico, México.

Bacteria and Archaea are microorganisms that play key roles in the biogeochemical transformations that control water quality in freshwater ecosystems, such as in reservoirs. In this study, we characterize the prokaryotic community of a high-relevance tropical eutrophic reservoir using a 16S rRNA gene survey during a low-water level fluctuation period mainly used for storage, associating the distribution of these microorganisms with the hydrogeochemical conditions of the water column. Our findings revealed that diversity and structure of the prokaryotic community exhibited spatio-temporal variations driven by the annual circulation-stratification hydrodynamic cycle and are significantly correlated with the concentrations of dissolved oxygen (DO), soluble reactive phosphorus (SRP), and dissolved inorganic nitrogen (DIN).

View Article and Find Full Text PDF

Erbium oxide nanoparticles (ErO-NPs) have attracted significant attention for their unique physicochemical properties, including high surface area, biocompatibility, and stability. However, the impact of ErO-NPs on lymphoma cells (LCs) has not been explored, making this an innovative avenue for exploration. Therefore, the current study aimed to explore the influence of ErO-NPs on cell viability, genomic and mitochondrial DNA integrity, reactive oxygen species (ROS) generation and apoptosis induction in human U937 LCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!