Critical Pressure of Intramural Delamination in Aortic Dissection.

Ann Biomed Eng

Department of Biomedical Engineering, Yale University, New Haven, CT, USA.

Published: February 2022

Computational models of aortic dissection can examine mechanisms by which this potentially lethal condition develops and propagates. We present results from phase-field finite element simulations that are motivated by a classical but seldom repeated experiment. Initial simulations agreed qualitatively and quantitatively with data, yet because of the complexity of the problem it was difficult to discern trends. Simplified analytical models were used to gain further insight. Together, simplified and phase-field models reveal power-law-based relationships between the pressure that initiates an intramural tear and key geometric and mechanical factors-insult surface area, wall stiffness, and tearing energy. The degree of axial stretch and luminal pressure similarly influence the pressure of tearing, which was ~88 kPa for healthy and diseased human aortas having sub-millimeter-sized initial insults, but lower for larger tear sizes. Finally, simulations show that the direction a tear propagates is influenced by focal regions of weakening or strengthening, which can drive the tear towards the lumen (dissection) or adventitia (rupture). Additional data on human aortas having different predisposing disease conditions will be needed to extend these results further, but the present findings show that physiologic pressures can propagate initial medial defects into delaminations that can serve as precursors to dissection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957392PMC
http://dx.doi.org/10.1007/s10439-022-02906-3DOI Listing

Publication Analysis

Top Keywords

aortic dissection
8
human aortas
8
critical pressure
4
pressure intramural
4
intramural delamination
4
delamination aortic
4
dissection
4
dissection computational
4
computational models
4
models aortic
4

Similar Publications

The objective of this study was to assess the course of rehabilitation of patients hospitalized in the cardiac rehabilitation unit after surgery for acute Stanford type A aortic dissection, extending beyond the ascending aorta, and comparing these findings with those for patients who, after the same type of surgery, had no remaining dissection. The aim was to develop an optimal cardiac rehabilitation model for this patient population, given the lack of clear guidelines. Additionally, the study aimed to evaluate their one-year survival.

View Article and Find Full Text PDF

Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.

View Article and Find Full Text PDF

Background/objectives: To develop and validate a model system using deep learning algorithms for the automatic detection of type A aortic dissection (AD), and differentiate it from normal and type B AD patients.

Methods: In this retrospective study, a deep learning model is developed, based on aortic computed tomography angiography (CTA) scans of 498 patients using training, validation and test sets of 398, 50 and 50 patients, respectively. An independent test set of 316 patients is used to validate and evaluate its performance.

View Article and Find Full Text PDF

Mid-term outcomes of frozen elephant trunk for chronic aortic dissection.

Can J Cardiol

January 2025

Cardiovascular department, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russian Federation.

Background: The aim of the study was to analyze the mid-term outcomes of the frozen elephant trunk (FET) procedure for chronic aortic dissection (СAD).

Methods: From March 2012 to December 2022, 123 FET procedures were performed in patients with acute and chronic aortic dissection as well as aortic aneurysm. Fifty-five patients with chronic aortic dissection (CAD) were eligible for study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!