Background: Despite the unprecedented performance of deep learning algorithms in clinical domains, full reviews of algorithmic predictions by human experts remain mandatory. Under these circumstances, artificial intelligence (AI) models are primarily designed as clinical decision support systems (CDSSs). However, from the perspective of clinical practitioners, the lack of clinical interpretability and user-centered interfaces hinders the adoption of these AI systems in practice.
Objective: This study aims to develop an AI-based CDSS for assisting polysomnographic technicians in reviewing AI-predicted sleep staging results. This study proposed and evaluated a CDSS that provides clinically sound explanations for AI predictions in a user-centered manner.
Methods: Our study is based on a user-centered design framework for developing explanations in a CDSS that identifies why explanations are needed, what information should be contained in explanations, and how explanations can be provided in the CDSS. We conducted user interviews, user observation sessions, and an iterative design process to identify three key aspects for designing explanations in the CDSS. After constructing the CDSS, the tool was evaluated to investigate how the CDSS explanations helped technicians. We measured the accuracy of sleep staging and interrater reliability with macro-F1 and Cohen κ scores to assess quantitative improvements after our tool was adopted. We assessed qualitative improvements through participant interviews that established how participants perceived and used the tool.
Results: The user study revealed that technicians desire explanations that are relevant to key electroencephalogram (EEG) patterns for sleep staging when assessing the correctness of AI predictions. Here, technicians wanted explanations that could be used to evaluate whether the AI models properly locate and use these patterns during prediction. On the basis of this, information that is closely related to sleep EEG patterns was formulated for the AI models. In the iterative design phase, we developed a different visualization strategy for each pattern based on how technicians interpreted the EEG recordings with these patterns during their workflows. Our evaluation study on 9 polysomnographic technicians quantitatively and qualitatively investigated the helpfulness of the tool. For technicians with <5 years of work experience, their quantitative sleep staging performance improved significantly from 56.75 to 60.59 with a P value of .05. Qualitatively, participants reported that the information provided effectively supported them, and they could develop notable adoption strategies for the tool.
Conclusions: Our findings indicate that formulating clinical explanations for automated predictions using the information in the AI with a user-centered design process is an effective strategy for developing a CDSS for sleep staging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811694 | PMC |
http://dx.doi.org/10.2196/28659 | DOI Listing |
Heliyon
January 2025
School of Music, College of Fine Arts, University of Tehran, Tehran, Iran.
Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.
View Article and Find Full Text PDFStudy Objectives: Poor sleep may play a role in the risk of dementia. However, few studies have investigated the association between polysomnography (PSG)-derived sleep architecture and dementia incidence. We examined the relationship between sleep macro-architecture and dementia incidence across five US-based cohort studies from the Sleep and Dementia Consortium (SDC).
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.
For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.
View Article and Find Full Text PDFSleep Biol Rhythms
January 2025
Bahcesehir University Medical Faculty, Neurology, Istanbul, Turkey.
Restless legs syndrome (RLS) is characterized by an uncomfortable urge to move the legs, worsened in the evening, occurring at rest, and relieved temporarily by movement. Although its pathophysiology remains incompletely understood, oxidative stress has been suggested. Uric acid (UA) is a marker associated with oxidative stress, and its reduced levels pose a risk for certain neurodegenerative diseases.
View Article and Find Full Text PDFJ Nephrol
January 2025
School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!