Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Fatty infiltration of the rotator cuff muscles is highly related to poor outcomes after rotator cuff tears. Fat fraction (FF) based on traditional 2-dimensional measurements (2D-FF) from a single sagittal Y-view slice cannot determine intramuscular FF in the rotator cuff muscles; the newly developed 3-dimensional method (3D-FF) is supposed to precede 2D measurements for intramuscular FF evaluation in accuracy and reliability.
Purpose: (1) To measure 3D-FF and (2) to compare 3D-FF and 2D-FF in terms of quantitative values and intra- and interobserver agreement.
Study Design: Cohort study (diagnosis); Level of evidence, 2.
Methods: Six-point Dixon magnetic resonance imaging was performed in patients with full-thickness supraspinatus tears. 2D-FF was calculated on a single sagittal Y-view. Semiautomatic segmentation software (ITK-SNAP) was used to reconstruct 3D volumes of the supraspinatus muscle and fat. 3D-FF was obtained by dividing the fat volume by the total volume of the supraspinatus muscle. A paired test was used to compare the individual differences between 2D-FF and 3D-FF results. Linear regression and Bland-Altman analyses were performed to determine the agreement between 2D-FF and 3D-FF. Intraclass correlation coefficients (ICCs) were calculated to determine intra- and interobserver agreement.
Results: The 3D muscular and fatty models presented an inhomogeneous distribution of intramuscular fat in the supraspinatus, indicating the superiority of 3D-FF over 2D-FF in capturing all muscle morphologic information. 2D-FF was significantly higher than 3D-FF in the supraspinatus with large (19.5% ± 5.9% vs 16.2% ± 3.7%; = .002) and massive (34.8% ± 13.3% vs 26.2% ± 9.4%; < .001) rotator cuff tears. 2D-FF overestimated the FF compared with 3D-FF by >50% in 14.7% of all patients and by >15% in 67.6% of patients with large or massive RCTs. The discrepancy between 2D-FF and 3D-FF increased with increasing mean FF. The intra- and interobserver agreement of 3D-FF (ICCs, 0.89-0.99 and 0.89-0.95) was superior to that of 2D-FF (ICCs, 0.71-0.95 and 0.64-0.79).
Conclusion: 3D-FF indicated an inhomogeneous distribution of intramuscular fat by capturing all muscle and fat morphologic information. In patients with large and massive rotator cuff tears, 2D-FF of the supraspinatus was significantly higher than 3D-FF. 3D-FF was more reliable than 2D-FF for estimating fatty infiltration in the supraspinatus, with better intra- and interobserver agreement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/03635465211068854 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!