Bat influenza viruses are genetically distant from classical influenza A viruses (IAVs) and show distinct functional differences in their surface antigens. Nevertheless, any comparative analyses between bat and classical IAV RNA polymerases or their specific subunits are yet to be performed. In this work, we have identified signature residues present in the bat influenza virus polymerase which are responsible for its altered fitness in comparison to the classical IAVs. Through comparative sequence and structural analysis, we have identified specific positions in the PB2 subunit of the polymerase, with differential amino acid preferences among bat and nonbat IAVs. Functional screening helped us to focus upon the previously uncharacterized PB2-282 residue, which is serine in bat virus but harbors highly conserved glutamic acid in classical IAVs. Introduction of E282S mutation in the human-adapted PB2 (influenza A/H1N1/WSN/1933) drastically reduces polymerase activity and replication efficiency of the virus in human, bat, and canine cells. Interestingly, this newly identified PB2-282 residue within an evolutionary conserved "S-E-S" motif, present across different genera of influenza viruses and serving as a key regulator of RNA synthesis activity of the polymerase. In contrast, bat influenza viruses harbor an atypical "S-S-T" motif at the same position of PB2, alteration of which with the human-like "S-E-T" motif significantly enhances its (H17N10/Guatemala/164/2009) polymerase activity in human cells. Together, our data indicate that the PB2-S282 residue may serve as an inherent restriction element of the bat virus polymerase, limiting its activity in other host species. Influenza A viruses are known for their ability to perform cross-species transmission, facilitated by amino acid alterations either in the surface antigen hemagglutinin (HA) or in the polymerase subunit PB2. Recent isolation of influenza A-like viruses from bats raised concern about their epizootic and zoonotic potential. Here, we identify a novel species-specific signature present within the influenza virus polymerase that may serve as a key factor in adaptation of influenza viruses from bat to nonbat host species. The PB2-282 residue, which harbors a highly conserved glutamic acid for influenza viruses across all genera (A, B, C, and D), encompasses an atypical serine in the case of bat influenza viruses. Our data show that the human-adapted polymerase, harboring a bat-specific signature (PB2-S282,) performs poorly, while bat PB2 protein, harboring a human-specific signature (PB2-E282), shows increased fitness in human cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906409 | PMC |
http://dx.doi.org/10.1128/jvi.02190-21 | DOI Listing |
Sci Rep
December 2024
State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.
View Article and Find Full Text PDFJ Infect Chemother
December 2024
Japan Physicians Association, Tokyo, Japan; Ricerca Clinica Co., Fukuoka, Japan.
Introduction: To assess the susceptibility of epidemic influenza viruses to the four most used neuraminidase inhibitors (NAIs) during the 2023-24 influenza season in Japan, we measured the 50% inhibitory concentration (IC) of oseltamivir, peramivir, zanamivir, and laninamivir in virus isolates from the sample of 100 patients.
Methods: Viral isolation was done using specimens obtained before and after treatment, with the type/subtype determined by RT-PCR using type- and subtype-specific primers. IC values were determined by a neuraminidase inhibition assay using a fluorescent substrate.
Vaccine
December 2024
Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Research Center for Respiratory Infectious Diseases, Beijing, China. Electronic address:
Introduction: The objective of our study was to estimate the influenza vaccine effectiveness for 2023/24 epidemic of co-circulating influenza A(H3N2) and B(Victoria) viruses in Beijing, China.
Methods: The surveillance-based study included all swabbed patients through influenza virological surveillance in Beijing, between October 2023 and March 2024. A Test-Negative Design(TND) was used to estimate influenza vaccine effectiveness(VE) against medically- attended laboratory-confirmed influenza in outpatient settings, also calculated the influenza vaccination rate(IVR).
Virulence
December 2025
Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.
Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.
View Article and Find Full Text PDFRev Med Virol
January 2025
United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA.
Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!