Background: We attempted to predict pathological factors and treatment outcomes using machine learning and radiomic features extracted from preoperative magnetic resonance imaging (MRI) of oropharyngeal squamous cell carcinoma (OPSCC) patients.
Methods: The medical records and imaging data of 155 patients who were diagnosed with OPSCC were analyzed retrospectively.
Results: The logistic regression model showed that the area under the receiver operating characteristic curve (AUC) of the model was 0.792 in predicting human papilloma virus (HPV) status. The LightGBM model showed an AUC of 0.8333 in predicting HPV status. The performance of the logistic model in predicting lymphovascular invasion, extracapsular nodal spread, and metastatic lymph nodes showed AUC values of 0.7871, 0.6713, and 0.6638, respectively. In predicting disease recurrence, the LightGBM model showed an AUC of 0.8571. In predicting patient death, the logistic model showed an AUC of 0.8175.
Conclusions: A machine learning model using MRI radiomics showed satisfactory performance in predicting pathologic factors and treatment outcomes of OPSCC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hed.26979 | DOI Listing |
Lung Cancer
January 2025
Internal Medicine III, Wakayama Medical University, Wakayama, Japan.
Objectives: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through comprehensive gene expression analysis using machine learning (ML).
Methods: A prospective multicenter cohort of patients with ES-SCLC who received first-line chemo-immunotherapy was analyzed.
J Speech Lang Hear Res
January 2025
Department of Psychology, University of Western Ontario, London, Canada.
Purpose: Recent advances in artificial intelligence provide opportunities to capture and represent complex features of human language in a more automated manner, offering potential means of improving the efficiency of language assessment. This review article presents computerized approaches for the analysis of narrative language and identification of language disorders in children.
Method: We first describe the current barriers to clinicians' use of language sample analysis, narrative language sampling approaches, and the data processing stages that precede analysis.
J Craniofac Surg
October 2024
Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, Italy.
Background: With the use of machine learning algorithms, artificial intelligence (AI) has become a viable diagnostic and treatment tool for oral cancer. AI can assess a variety of information, including histopathology slides and intraoral pictures.
Aim: The purpose of this systematic review is to evaluate the efficacy and accuracy of AI technology in the detection and diagnosis of oral cancer between 2020 and 2024.
Neuroradiol J
January 2025
Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Iran.
Introduction: The prevalence of neurodegenerative diseases has significantly increased, necessitating a deeper understanding of their symptoms, diagnostic processes, and prevention strategies. Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are two prominent neurodegenerative conditions that present diagnostic challenges due to overlapping symptoms. To address these challenges, experts utilize a range of imaging techniques, including magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT).
View Article and Find Full Text PDFAm J Phys Med Rehabil
December 2024
Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226.
Predicting discharge destination for patients at inpatient rehabilitation facilities is important as it facilitates transitions of care and can improve healthcare resource utilization. This study aims to build on previous studies investigating discharges from inpatient rehabilitation by employing machine learning models to predict discharge disposition to home versus non-home and explore related factors. Fifteen machine learning models were tested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!