Density functional calculations and microkinetic simulations were performed on the transformation network of acetylene on Pd(111), M(111) and PdM(111) (M = Cu, Ag, Au) surfaces. It is demonstrated that the adsorption energies on alloy surfaces linearly correlate with the values on the pure metal surfaces. A good linear relationship between the co-adsorption energies of initial states and transition states is revealed with which the barriers of most elementary steps in the reaction network were estimated. To shed light on the transformation of acetylene, microkinetic simulations were conducted on the network. The results show that CHCH and H are dominant species on the surfaces and CCH, CCH and CCH are the main intermediates. Analysis indicates that introduction of coinage metals into Pd reduces the activity, but promotes the selectivity by lowering the barrier of CHCH → CHCH. The present work provides a comprehensive overview of acetylene transformation on palladium, coinage metals and their alloy surfaces. The linear relationship of adsorption energies between the component metal and alloy surfaces and usage of the TSS relationship to evaluate barriers for microkinetic simulations are worthy of being further studied and extended to other systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp05353a | DOI Listing |
J Phys Chem A
January 2025
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Sandia National Laboratories, Livermore, California 94550, USA.
Experimental validation of complex microkinetic models derived from quantum chemistry is crucial for the advancement of bottom-up approaches to heterogeneous catalysis. State-of-the-art velocity-resolved kinetics experiments have made tremendous progress in this arena but integrate reactivity over centimeter-scale single-crystal catalytic surfaces even when complex spatial phenomena may perturb the kinetic results. We report a new design, optimization, and analysis of an ion imaging microscope that can collect spatially resolved kinetic data from a catalytic surface.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
Ammonia (NH) is one of the most widely produced chemicals globally, primarily synthesized through the Haber-Bosch process, which requires high temperatures and pressures. Dual-site catalysts can activate N and H at spatially separated sites, enabling efficient NH synthesis under milder conditions. Despite the rapid experimental progress of the dual-site catalysts (e.
View Article and Find Full Text PDFChemphyschem
November 2024
Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111, Budapest, Hungary.
Small gas-phase metal clusters serve as model systems for complex catalytic reactions, enabling the exploration of the impacts of the size, doping, charge state and other factors under clean conditions. Although the mechanisms of reactions involving metal clusters are known in many cases, they are not always sufficient to interpret the experimental results, as those can be strongly influenced by the chemical kinetics under specific conditions. Therefore, our objective here is to develop a model that utilizes quantum chemical computations to comprehend and predict the precise kinetics of gas-phase cluster reactions, particularly under low-pressure conditions.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Shandong 265503, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!