Machine Learning Assisted Screening of Two-Dimensional Materials for Water Desalination.

ACS Nano

Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, United States.

Published: February 2022

AI Article Synopsis

Article Abstract

There exists a vast expanse of data in the literature which can be harnessed for accelerated design and discovery of advanced materials for various applications of importance ─ for example, desalination of seawater. Here, we develop a machine learning (ML) model, training it with ∼260 molecular dynamics (MD) computation results, to predict the desalination performance of 2D membranes that exist in the literature. The desalination performance variables of water flux and salt rejection rates are correlated to 49 material features related to the chemistry of the pores and the membranes along with applied pressure, salt concentration, partial charges on the atoms, geometry of the pore, the mechanical properties of the membranes, and the properties of water for the water model used. We used the ML model to screen 3814 structurally optimized 2D materials for maximum water flux and salt rejection rates from the literature. We found some candidates that perform ∼4 times better than the more popularly known 2D materials such as graphene and MoS. This result is verified using data obtained from MD simulations performed on several representative 2D membranes for different classes. Such validated statistical frameworks using literature data can be very useful in guiding experiments in the field of functional materials for varied applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c05345DOI Listing

Publication Analysis

Top Keywords

machine learning
8
desalination performance
8
water flux
8
flux salt
8
salt rejection
8
rejection rates
8
materials
5
water
5
learning assisted
4
assisted screening
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!