Dietary DNA metabarcoding enables researchers to identify and characterize trophic interactions with a high degree of taxonomic precision. It is also sensitive to sources of bias and contamination in the field and laboratory. One of the earliest and most common strategies for dealing with such sensitivities has been to remove all low-abundance sequences and conduct ecological analyses based on the presence or absence of food taxa. Although this step is now often perceived to be necessary, evidence of its sufficiency is lacking and more attention to the risk of introducing other errors is needed. Using computer simulations, we demonstrate that common strategies to remove low-abundance sequences can erroneously eliminate true dietary sequences in ways that impact downstream inferences. Using real data from well-studied wildlife populations in Yellowstone National Park, we further show how these strategies can markedly alter the composition of dietary profiles in ways that scale-up to obscure ecological interpretations about dietary generalism, specialism, and composition. Although the practice of removing low-abundance sequences may continue to be a useful strategy to address research questions that focus on a subset of relatively abundant foods, its continued widespread use risks generating misleading perceptions about the structure of trophic networks. Researchers working with dietary DNA metabarcoding data-or similar data such as environmental DNA, microbiomes, or pathobiomes-should be aware of drawbacks and consider alternative bioinformatic, experimental, and statistical solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9303378PMC
http://dx.doi.org/10.1111/mec.16352DOI Listing

Publication Analysis

Top Keywords

dietary dna
12
dna metabarcoding
12
low-abundance sequences
12
common strategies
8
remove low-abundance
8
dietary
6
precautionary principle
4
principle dietary
4
dna
4
metabarcoding commonly
4

Similar Publications

[Investigating jellyfish diet with DNA macrobarcoding: A case study in ].

Ying Yong Sheng Tai Xue Bao

October 2024

Liaoning Ocean and Fisheries Science Research Institute/Key Laboratory of Protection and Utilization of Aquatic Germplasm Resource, Ministry of Agriculture and Rural Affairs/Key Laboratory of Molecular Biology for Marine Fishery, Dalian 116023, Liaoning, China.

We investigated food composition and feeding selectivity of jellyfish () from the coastal aquaculture ponds in Liaodong Bay by DNA metabarcoding technology. The DNA from environmental water samples and stomach contents of were extracted and sequenced by high-throughput sequencing with 18S rDNA V4 region and mitochondrial cytochrome c oxidase subunit I (COI) as metabarcoding markers. Based on 18S rDNA metabarcoding, we detected 27 phyla in the stomach contents of , in which Mollusc was the dominant phylum followed by Arthropod, and 34 phyla in the environmental water samples, in which Pyrrophyta was the dominant phylum followed by Ciliophora and Ascomycota.

View Article and Find Full Text PDF

Background: Food provides essential nutrients and energy necessary for animals to sustain life activities. Accordingly, dietary niche analysis facilitates the exploration of foraging strategies and interspecific relationships among wildlife. The vegetation succession has reduced understory forage resources (.

View Article and Find Full Text PDF

Improved environmental DNA detection sensitivity of Opisthorchis viverrini using a multi-marker assay.

Parasitol Res

December 2024

Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-8501, Japan.

Opisthorchiasis, caused by the liver fluke Opisthorchis viverrini, is endemic to Southeast Asian countries and constitutes a major health problem as it increases the risk of cholangiocarcinoma. However, owing to the complicated life cycle of O. viverrini, there is no rapid method for monitoring the risk of infection in the environment.

View Article and Find Full Text PDF

The Moche archaeological culture flourished along Peru's North Coast between the 4th and 10th centuries CE and was characterized by a complex social hierarchy dominated by political and religious elites. Previous archaeological evidence suggests kinship was a key factor in maintaining political authority within Moche society. To test this hypothesis, we applied archaeological, genetic, and isotopic methods to examine familial relationships between six individuals, including the prominent Señora de Cao (), buried together in a pyramid-like, painted temple, Huaca Cao Viejo, in the Chicama Valley, Peru.

View Article and Find Full Text PDF

Gut microbiome-gut brain axis-depression: interconnection.

World J Biol Psychiatry

December 2024

Institute of Biosciences and Technology, MGM University, Aurangabad, India.

Objectives: The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!