Recently, we have identified CaMKIIα and CaMKIIβ mutations in patients with neurodevelopmental disorders by whole exome sequencing study. Most CaMKII mutants have increased phosphorylation of Thr286/287, which induces autonomous activity of CaMKII, using cell culture experiments. In this study, we explored the pathological mechanism of motor dysfunction observed exclusively in a patient with Pro213Leu mutation in CaMKIIβ using a mouse model of the human disease. The homozygous CaMKIIβ Pro213Leu knockin mice showed age-dependent motor dysfunction and growth failure from 2 weeks after birth. In the cerebellum, the mutation did not alter the mRNA transcript level, but the CaMKIIβ protein level was dramatically decreased. Furthermore, in contrast to previous result from cell culture, Thr287 phosphorylation of CaMKIIβ was also reduced. CaMKIIβ Pro213Leu knockin mice showed similar motor dysfunction as CaMKIIβ knockout mice, newly providing evidence for a loss of function rather than a gain of function. Our disease model mouse showed similar phenotypes of the patient, except for epileptic seizures. We clearly demonstrated that the pathological mechanism is a reduction of mutant CaMKIIβ in the brain, and the physiological aspects of mutation were greatly different between in vivo and cell culture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.25013 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Chronic coronary artery disease (CAD) remains a significant global healthcare burden. Current risk assessment methods have notable limitations in early detection and risk stratification. Hence, there is an urgent need for innovative biomarkers that facilitate the premature CAD diagnosis, ultimately leading to reduction in associated morbidity and mortality rates.
View Article and Find Full Text PDFElife
December 2024
Department of Pathology, Stanford University School of Medicine, Stanford, United States.
The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Urology, Suzhou Wuzhong No.2 People's Hospital, Suzhou, China.
Background: This study investigates the relationship between sagittal abdominal diameter (SAD), a measure of abdominal obesity, and kidney stone disease (KSD) in the U.S. population.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
S-Palmitoylation is a reversible post-translational modification involving saturated fatty acid palmitate-to-cysteine linkage in the protein, which guides many aspects of macrophage physiology in health and disease. However, the precise role and underlying mechanisms of palmitoylation in infection of macrophages remain elusive. Here, we found that infection induced the expression of zinc-finger DHHC domain-type palmitoyl-transferases (ZDHHCs), particularly ZDHHC2, in mouse macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!