Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radish (Raphanus sativus L.) belongs to the family Brassicaceae. The Yunnan red radish variety contains fairly relatively large amounts of anthocyanins, making them important raw materials for producing edible red pigment. However, the genetic mechanism underlying this pigmentation has not been fully characterized. Herein, the radish inbred line YAAS-WR1 (white root-skin and white root-flesh) was crossed with the inbred line YAAS-RR1 (red root-skin and red root-flesh) to produce F1, F2, BC1P1, and BC1P2 populations. Genetic analyses revealed that the pigmented/non-pigmented (PiN) and purple/red (PR) traits were controlled by two genetic loci. The F2 population and the specific-locus amplified fragment sequencing (SLAF-seq) technique were used to construct a high-density genetic map (1230.16 cM), which contained 4032 markers distributed in nine linkage groups, with a mean distance between markers of 0.31 cM. Additionally, two QTL (QAC1 and QAC2) considerably affecting radish pigmentation were detected. A bioinformatics analysis of the QAC1 region identified 58 predicted protein-coding genes. Of these genes, RsF3'H, which is related to anthocyanin biosynthesis, was revealed as a likely candidate gene responsible for the PR trait. The results were further verified by analyzing gene structure and expression. Regarding QAC2, RsMYB1.3 was determined to be a likely candidate gene important for the PiN trait, with a 4-bp insertion in the first exon that introduced a premature termination codon in the YAAS-WR1 sequence. Assays demonstrated that RsMYB1.3 interacted with RsTT8 and activates RsTT8 and RsUFGT expression. These findings may help clarify the complex regulatory mechanism underlying radish anthocyanin synthesis. Furthermore, this study's results may be relevant for the molecular breeding of radish to improve the anthocyanin content and appearance of the taproots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8829420 | PMC |
http://dx.doi.org/10.1093/hr/uhab031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!