Linezolid Metabolism Is Catalyzed by Cytochrome P450 2J2, 4F2, and 1B1.

Drug Metab Dispos

Pfizer Inc., Groton, Connecticut

Published: April 2022

The oxazolidinone antibacterial linezolid has been in clinical use for over 20 years, yet knowledge of the contributions of specific cytochrome (CYP) 450 enzymes to the metabolic clearance of this drug were mostly unknown. In this investigation, it was revealed that three P450 enzymes that had not been previously explored in linezolid metabolism, CYP2J2, CYP4F2, and CYP1B1, catalyzed the 2-hydroxylation and de-ethyleneation of the morpholine moiety of linezolid. The intrinsic clearance for linezolid metabolism in pooled human liver microsomes was low at 0.51 μL/min/mg protein, consistent with its in vivo clearance in humans, and the K was high (>200 μM). In recombinant human P450 enzymes, a rank order of intrinsic clearance values for linezolid 2-hydroxylation were CYP2J2 ≫ CYP4F2 > CYP2C8 > CYP1B1 ≈ CYP2D6 ≈ CYP3A4 > CYP1A1 > CYP3A5, with nine other P450 enzymes showing no linezolid metabolism. The effect of selective inhibitors for these eight P450 enzymes on linezolid metabolism in pooled human liver microsomes was evaluated to provide estimates of the relative fractional contributions of these enzymes to linezolid metabolism. These experiments suggest that CYP2J2 and CYP4F2 contribute about 50% each to linezolid hepatic metabolism. It is proposed that the oxidative metabolic clearance of linezolid is primarily catalyzed by these two unusual P450 enzymes and that this explains the lack of observation of meaningful effects of common perpetrators of drug interactions on linezolid pharmacokinetics. SIGNIFICANCE STATEMENT: Linezolid is an important antibacterial drug, but the enzymes involved in its oxidative metabolism were unknown. In this study, evidence is shown that supports an important role for two enzymes not frequently associated with the metabolism of drugs: cytochrome P450 2J2 and cytochrome P450 4F2. These observations offer insight to understand the results of clinical drug-drug interaction studies conducted on linezolid.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.121.000776DOI Listing

Publication Analysis

Top Keywords

linezolid metabolism
24
p450 enzymes
20
linezolid
14
cytochrome p450
12
enzymes
9
p450
8
p450 2j2
8
metabolic clearance
8
metabolism
8
cyp2j2 cyp4f2
8

Similar Publications

Article Synopsis
  • The study explores using lytic bacteriophages combined with the antibiotic linezolid to treat methicillin-resistant bacteria, showing a strong synergistic effect against planktonic cells.
  • A checkerboard assay indicated that a specific combination of low doses of both agents completely inhibited bacterial growth, but the order of treatments affected biofilm cells—sequential treatment was less effective while simultaneous treatment was more beneficial.
  • Transcriptomic analysis revealed that the combination altered bacterial metabolism, including energy and virulence factors, emphasizing the need to optimize treatment strategies for maximum effectiveness against infections.
View Article and Find Full Text PDF

Enterobacter asburiae (E. asburiae) is a gram-negative rod-shaped bacterium which has emerging significance as an opportunistic pathogen having high virulence pattern and drug resistant properties. In this study, we present the detailed analysis of the whole genome sequence of a multidrug-resistant (MDR) E.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) treatment typically involves a tailored combination of four antibiotics based on the drug resistance profile of the infecting strain. The increasing drug resistance of () requires the development of novel antibiotics to ensure effective treatment regimens. Gallium (Ga) is being explored as a repurposed drug against TB due to its ability to inhibit growth and disrupt iron metabolism.

View Article and Find Full Text PDF

Bedaquiline (BDQ), a diarylquinoline compound, is an inhibitor of mycobacterial ATP synthase, specifically with FDA approval as a treatment for multidrug-resistant tuberculosis (MDR-TB). M2 is the main metabolite of BDQ and is active against tuberculosis. The objective of this study was to establish and validate a sensitive and convenient ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) approach to concurrently quantify BDQ and M2 in rat plasma and to examine whether resveratrol, a CYP3A4 inhibitor, could influence the pharmacokinetics of BDQ and M2 in rats.

View Article and Find Full Text PDF
Article Synopsis
  • A pharmacokinetic model was developed to understand how linezolid behaves in neonates, paving the way for better treatment regimens.
  • A study involving 64 neonates with sepsis used advanced testing methods to accurately measure drug levels and created a robust model for linezolid's distribution and clearance.
  • The findings recommend specific dosages based on gestational age, with optimal administration ranging from 6 mg/kg to 11 mg/kg every 8 hours according to the neonate's age.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!