Background: Leaf hairiness (pubescence) is an important plant phenotype which regulates leaf transpiration, affects sunlight penetration, and provides increased resistance or susceptibility against certain insects. Cotton accounts for 80% of global natural fibre production, and in this crop leaf hairiness also affects fibre yield and value. Currently, this key phenotype is measured visually which is slow, laborious and operator-biased. Here, we propose a simple, high-throughput and low-cost imaging method combined with a deep-learning model, HairNet, to classify leaf images with great accuracy.
Results: A dataset of [Formula: see text] 13,600 leaf images from 27 genotypes of Cotton was generated. Images were collected from leaves at two different positions in the canopy (leaf 3 & leaf 4), from genotypes grown in two consecutive years and in two growth environments (glasshouse & field). This dataset was used to build a 4-part deep learning model called HairNet. On the whole dataset, HairNet achieved accuracies of 89% per image and 95% per leaf. The impact of leaf selection, year and environment on HairNet accuracy was then investigated using subsets of the whole dataset. It was found that as long as examples of the year and environment tested were present in the training population, HairNet achieved very high accuracy per image (86-96%) and per leaf (90-99%). Leaf selection had no effect on HairNet accuracy, making it a robust model.
Conclusions: HairNet classifies images of cotton leaves according to their hairiness with very high accuracy. The simple imaging methodology presented in this study and the high accuracy on a single image per leaf achieved by HairNet demonstrates that it is implementable at scale. We propose that HairNet replaces the current visual scoring of this trait. The HairNet code and dataset can be used as a baseline to measure this trait in other species or to score other microscopic but important phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767704 | PMC |
http://dx.doi.org/10.1186/s13007-021-00820-8 | DOI Listing |
Environ Microbiome
January 2025
School of Natural Sciences, Bangor University, Bangor, UK.
Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Duranta erecta Linn. belongs to the Verbenaceae family and is primarily found in subtropical, tropical, and temperate climates. The plant has been reported to contain a variety of phytoconstituents, including iridoid glycosides, flavonoids, flavonoid glycosides, alkaloids, phenolics, tannins, terpenoids, steroids, and saponins.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.
View Article and Find Full Text PDFBackground: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Biotechnology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
An efficient in vitro propagation protocol has been established for a valuable medicinal plant, Salix tetrasperma using mature nodal explants. The investigation aimed to observe the influence of various combinations and concentrations of cytokinins (mT, BA, and Kn) and auxins (NAA, IAA, and IBA) on regeneration potential using the Murashige and Skoog (MS) medium. Among individual cytokinin treatments, 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!