Capacitive biosensor based on vertically paired electrodes for the detection of SARS-CoV-2.

Biosens Bioelectron

Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea. Electronic address:

Published: April 2022

AI Article Synopsis

  • Researchers developed vertically paired electrodes (VPEs) to enhance capacitive measurements by optimizing the electrode gap and increasing the number of electrode pairs, using a conductive polymer (PEDOT:PSS) instead of traditional metal electrodes to improve fabrication yield.
  • A model for an immunoassay demonstrated that reducing the electrode gap and increasing pairs significantly improved sensitivity, supported by computer simulations.
  • The VPEs were successfully applied in detecting the SARS-CoV-2 nucleoprotein, achieving a detection limit that meets medical diagnosis standards and showing comparable results to a commercial rapid diagnostic kit.

Article Abstract

Vertically paired electrodes (VPEs) with multiple electrode pairs were developed for the enhancement of capacitive measurements by optimizing the electrode gap and number of electrode pairs. The electrode was fabricated using a conductive polymer layer of PEDOT:PSS instead of Ag and Pt metal electrodes to increase the VPE fabrication yield because the PEDOT:PSS layer could be effectively etched using a reactive dry etching process. In this study, sensitivity enhancement was realized by decreasing the electrode gap and increasing the number of VPE electrode pairs. Such an increase in sensitivity according to the electrode gap and the number of electrode pairs was estimated using a model analyte for an immunoassay. Additionally, a computer simulation was performed using VPEs with different electrode gaps and numbers of VPE electrode pairs. Finally, VPEs with multiple electrode pairs were applied for SARS-CoV-2 nucleoprotein (NP) detection. The capacitive biosensor based on the VPE with immobilized anti-SARS-CoV-2 NP was applied for the specific detection of SARS-CoV-2 in viral cultures. Using viral cultures of SARS-CoV-2, SARS-CoV, MERS-CoV, and CoV-strain 229E, the limit of detection (LOD) was estimated to satisfy the cutoff value (dilution factor of 1/800) for the medical diagnosis of COVID-19, and the assay results from the capacitive biosensor were compared with commercial rapid kit based on a lateral flow immunoassay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741629PMC
http://dx.doi.org/10.1016/j.bios.2022.113975DOI Listing

Publication Analysis

Top Keywords

electrode pairs
24
capacitive biosensor
12
electrode gap
12
electrode
11
biosensor based
8
vertically paired
8
paired electrodes
8
detection sars-cov-2
8
vpes multiple
8
multiple electrode
8

Similar Publications

Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.

Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.

View Article and Find Full Text PDF

Role of Mesoporosity in Hard Carbon Anodes for High-Energy and Stable Potassium-Ion Storage.

Small

January 2025

Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.

Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.

View Article and Find Full Text PDF

Consumer-grade EEG devices, such as the InteraXon Muse 2 headband, present a promising opportunity to enhance the accessibility and inclusivity of neuroscience research. However, their effectiveness in capturing language-related ERP components, such as the N400, remains underexplored. This study thus aimed to investigate the feasibility of using the Muse 2 to measure the N400 effect in a semantic relatedness judgment task.

View Article and Find Full Text PDF

Using High-Entropy Configuration Strategy to Design Spinel Lithium Manganate Cathodes with Remarkable Electrochemical Performance.

Small

January 2025

National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China.

Owing to its abundant manganese source, high operating voltage, and good ionic diffusivity attributed to its 3D Li-ion diffusion channels. Spinel LiMnO is considered a promising low-cost positive electrode material in the context of reducing scarce elements such as cobalt and nickel from advanced lithium-ion batteries. However, the rapid capacity degradation and inadequate rate capabilities induced by the Jahn-Teller distortion and the manganese dissolution have limited the large-scale adoption of spinel LiMnO for decades.

View Article and Find Full Text PDF

Thermally Stimulated Spin Switching Accelerates Water Electrolysis.

Phys Rev Lett

December 2024

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.

Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!