Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, a blend membrane consisting of polyvinylidene fluoride (PVDF) and tertiary amine containing random copolymer poly(methyl methacrylate-r-dimethylamino-2-ethyl methacrylate) (P(MMA-r-DMAEMA)) was fabricated and utilized as an adsorptive membrane for micropollutants (anionic dye and heavy metal ions) removal from aqueous solutions. Cross-linking the random copolymer by p-xylylene dichloride (XDC) produced the membrane with improved copolymer retention ratio and stability, while slightly variated physicochemical properties. Besides, the fluxes of crosslinked blend membranes dramatically increased from 0.7 ± 0.1 L/(mh) to 118.6 ± 5.9 L/(mh). Then the present blend membrane was carried out adsorption and filtration experiments to investigate the influence of various of operation parameters including initial solution pH value, contacting time, initial solution concentration, and recycling efficiency on micropollutants removal. The experimental results showed that the removal of the anionic dyes and heavy metal ions on this tertiary amine containing blend membrane was a pH-dependent process with the maximum adsorption capacity at the initial solution pH of 3.5 for anionic dyes and 6.0 for metal ions, respectively. The membrane showed highly efficient capture of sunset yellow (above 99%). Meanwhile, the captured sunset yellow was recovered and concentrated with a small volume of alkaline solutions at pH 10.0, which simultaneously regenerated the membrane for its reuse. In a 3-cycle capture-recovery test, the membrane demonstrated a high sunset yellow recovery ratio and a volumetric concentration ratio as high as 400%. Our study provides an alternative strategy for functionalized membrane fabrication, micropollutants removal and recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.01.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!