Purpose: We assessed whether automated detection software, combined with live observation, enabled reliable seizure detection using three commercial software packages: Persyst, Encevis and BESA.
Methods: Two hundred and eighty-six prolonged EEG records of individuals aged 16-86 years, collected between August 2019 and January 2020, were retrospectively processed using all three packages. The reference standard included all seizures mentioned in the clinical report supplemented with true detections made by the software and not previously detected by clinical physiologists. Sensitivity was measured for offline review by clinical physiologists and software seizure detection, both in combination with live monitoring in an EMU setting, for all three software packages at record and seizure level.
Results: The database contained 249 seizures in 64 records. The sensitivity of seizure detection was 98% for Encevis and Persyst, and 95% for BESA, when a positive results was defined as detection at least one of the seizures occurring within an individual record. When positivity was defined as recognition of all seizures, sensitivity was 93% for Persyst, 88% for Encevis and 84% for BESA. Clinical physiologists' review had a sensitivity of 100% at record level and 98% at seizure level. The median false positive rate per record was 1.7 for Persyst, 2.4 for BESA and 5.5 for Encevis per 24 h.
Conclusion: Automated seizure detection software does not perform as well as technicians do. However, it can be used in an EMU setting when the user is aware of its weaknesses. This assessment gives future users helpful insight into these strengths and weaknesses. The Persyst software performs best.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.seizure.2022.01.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!