The aminobenzamide is selective to class I histone deacetylases (HDACs) and displays unique tight-binding/slow-off HDAC-binding mechanism. Herein, we report a series of 9-substituted purine aminobenzamides that selectively inhibit class I HDACs. The activities in vitro showed compound 9d exhibited 12 folds more potent than MS-275 against HDAC1 isoform and showed excellent inhibitory activity on cancer cells, including HCT-116, MDA-MB-231, K562 cell lines. The metabolic stability of 9d was much better than that of the well-known HDAC inhibitor SAHA. Pulse exposure test of western blot assay demonstrated that 9a, 9d induced histone acetylation in a similar manner to MS-275. Further biological validation demonstrated that 9d prevented cell transition from G1 phase to S phase by reducing Cyclin D1, CDK2 and lifting p21, induced early apoptosis by upregulating BAX and downregulating Bcl-2 in HCT-116 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2021.116599DOI Listing

Publication Analysis

Top Keywords

class histone
8
histone deacetylases
8
synthesis biological
4
biological evaluation
4
evaluation aminobenzamides
4
aminobenzamides purine
4
purine moiety
4
moiety class
4
deacetylases inhibitors
4
inhibitors aminobenzamide
4

Similar Publications

Article Synopsis
  • Epigenetic processes, particularly histone modification by HDACs, are crucial in cancer development, making HDACs important targets for cancer therapies.
  • The challenge with most HDAC inhibitors is their non-selective nature and drug resistance, prompting a search for more effective and isoform-selective options.
  • Alectinib has been identified through virtual screening as a potential HDAC1 inhibitor with better efficiency and stability, suggesting its promise for therapy in HDAC1-related cancers, pending further validation.
View Article and Find Full Text PDF

Histone deacetylase HDAC4/5 cooperates with cAMP response element-binding protein (CREB) in the transcriptional regulation of daily sleep amount downstream of LKB1-SIK3 kinase cascade in mice. Here, we report a significant enrichment of the E-box motifs for the basic loop-helix-loop (bHLH) proteins near the CREB- and HDAC4-binding sites in the mouse genome. Adeno-associated virus (AAV)-mediated expression of class I bHLH transcription factors, such as TCF4, TCF3, or TCF12, across the mouse brain neurons reduces the duration of rapid eye movement sleep (REMS) and non-REMS (NREMS).

View Article and Find Full Text PDF

Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Development.

Metabolites

December 2024

The Laboratory of Heart Development Research, College of Life Science, Hunan Normal University, Changsha 410081, China.

General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in . Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In , Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development.

View Article and Find Full Text PDF

Aneuploidy in eggs is a leading cause of miscarriages or viable developmental syndromes. Aneuploidy rates differ between individual chromosomes. For instance, chromosome 21 frequently missegregates, resulting in Down Syndrome.

View Article and Find Full Text PDF

Synthetic approaches and clinical applications of representative HDAC inhibitors for cancer therapy: A review.

Eur J Med Chem

February 2025

Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China. Electronic address:

Histone deacetylase (HDAC) inhibitors are a promising class of epigenetic modulators in cancer therapy. This review provides a comprehensive analysis of recent synthetic strategies and clinical applications of key HDAC inhibitors for oncology. HDACs play a critical role in modulating chromatin structure and gene expression by removing acetyl groups from histone proteins, leading to transcriptional repression of tumor suppressor genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!