Duckweed is a universal aquatic plant to remove nitrogen source pollutants in the field of phytoremediation. Due to the naturally abundant nitrogen, synthesis of carbon materials from duckweed would be a high-value approach. In oxygen reduction reaction (ORR) of metal-air batteries and fuel cells, non-noble metals and heteroatoms co-doped electrocatalysts with excellent catalytic activity and remarkable stability are promising substitutes for Pt-based catalysts. The first-class ORR performance is determined by appropriate pore structure and active sites, which are strongly associated with the feasible synthesis methods. Herein, a facile one-step synthesis strategy for the transition metals- and nitrogen-codoped carbon (MNC) based catalysts with hierarchically porous structure was developed. The MNC (M = Fe, Co, Ni, and Mn) active sites were constructed and FeNC (D-ZB-Fe) was the best electrocatalyst with excellent ORR performance. Results showed that D-ZB-Fe exhibited an obvious honeycomb porous structure with specific surface area of 1342.91 m·g and total pore volume of 1.085 cm·g. It also possessed considerable active atoms and sites, where the proportion of pyridine N and graphite N was up to 72.9%. The above feature made for a superior ORR electrocatalytic activity. In specific, the onset and half-wave potential were 0.974 V and 0.857 V vs. RHE (Reversible Hydrogen Electrode), respectively. When compared with performances of commercial Pt/C, the four-electron pathway and relatively low peroxide yield, ca. 5%, were almost equivalent. Furthermore, D-ZB-Fe showed an excellent stability and remarkably methanol tolerance by the durability test. In conclusion, this research provides a new synthesis strategy of electrocatalysts with porous structures and active sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153115DOI Listing

Publication Analysis

Top Keywords

active sites
12
oxygen reduction
8
reduction reaction
8
orr performance
8
synthesis strategy
8
porous structure
8
utilizing waste
4
waste duckweed
4
duckweed phytoremediation
4
phytoremediation synthesize
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) models.

View Article and Find Full Text PDF

Elucidating the degradation mechanism of beef myofibrillar proteins under hydroxyl radical oxidation through the lens of cysteine oxidation modifications.

Food Chem X

January 2025

Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.

The study aimed to assess the oxidative modification behavior of bovine myofibrillar proteins (MPs) cysteines (Cys) by hydroxyl radical (·OH) through the construction of an in vitr Fenton reaction system. The ·OH generated by the Fenton reaction induced large-scale oxidative modification of Cys, and redox proteomics identified a total of 1192 differential oxidation sites (Dos), 59 Dos were located in the MPs structure. The Cys of actin (17 Dos), myosin/myomesin (16 Dos), tenascin (12 Dos) and sarcomere (10 Dos) in the MPs structure showed active oxidative modification behavior towards ·OH, especially with the "-C-X-X-X-X-W-" structure amino acid sequence showed high sensitivity.

View Article and Find Full Text PDF

In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.

View Article and Find Full Text PDF

Background: A review of Health Canada's post-market surveillance database has revealed that the reporting of adverse events (AEs) following aesthetic injectable treatments is significantly underreported. To increase reporting, investigators have recently developed a novel Electronic Data Capture system: The Global Registry of Adverse Clinical Events (GRACE).

Objective: To identify the incidence of AEs associated with aesthetic injectable treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!