Deep learning of early brain imaging to predict post-arrest electroencephalography.

Resuscitation

Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.

Published: March 2022

Introduction: Guidelines recommend use of computerized tomography (CT) and electroencephalography (EEG) in post-arrest prognostication. Strong associations between CT and EEG might obviate the need to acquire both modalities. We quantified these associations via deep learning.

Methods: We performed a single-center, retrospective study including comatose patients hospitalized after cardiac arrest. We extracted brain CT DICOMs, resized and registered each to a standard anatomical atlas, performed skull stripping and windowed images to optimize contrast of the gray-white junction. We classified initial EEG as generalized suppression, other highly pathological findings or benign activity. We extracted clinical information available on presentation from our prospective registry. We trained three machine learning (ML) models to predict EEG from clinical covariates. We used three state-of-the-art approaches to build multi-headed deep learning models using similar model architectures. Finally, we combined the best performing clinical and imaging models. We evaluated discrimination in test sets.

Results: We included 500 patients, of whom 218 (44%) had benign EEG findings, 135 (27%) showed generalized suppression and 147 (29%) had other highly pathological findings that were most commonly (93%) burst suppression with identical bursts. Clinical ML models had moderate discrimination (test set AUCs 0.73-0.80). Image-based deep learning performed worse (test set AUCs 0.51-0.69), particularly discriminating benign from highly pathological findings. Adding image-based deep learning to clinical models improved prediction of generalized suppression due to accurate detection of severe cerebral edema.

Discussion: CT and EEG provide complementary information about post-arrest brain injury. Our results do not support selective acquisition of only one of these modalities, except in the most severely injured patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923981PMC
http://dx.doi.org/10.1016/j.resuscitation.2022.01.004DOI Listing

Publication Analysis

Top Keywords

deep learning
16
generalized suppression
12
highly pathological
12
pathological findings
12
learning models
8
discrimination test
8
clinical models
8
test set
8
set aucs
8
image-based deep
8

Similar Publications

The increasing prevalence of diabetes mellitus worldwide necessitates that medical undergraduates acquire a deep understanding of the disease to ensure accurate diagnosis and effective management. Traditional teaching methods, while foundational, often lack the interactive elements that enhance student engagement and knowledge retention. This study aimed to evaluate the effectiveness of a novel educational board game, "Diabe-teach," in enhancing knowledge retention among medical students compared with conventional self-study methods.

View Article and Find Full Text PDF

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology.

BMC Cancer

January 2025

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.

Objective: Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value.

View Article and Find Full Text PDF

Novel transfer learning based bone fracture detection using radiographic images.

BMC Med Imaging

January 2025

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

A bone fracture is a medical condition characterized by a partial or complete break in the continuity of the bone. Fractures are primarily caused by injuries and accidents, affecting millions of people worldwide. The healing process for a fracture can take anywhere from one month to one year, leading to significant economic and psychological challenges for patients.

View Article and Find Full Text PDF

This study presents an advanced methodology for 3D heart reconstruction using a combination of deep learning models and computational techniques, addressing critical challenges in cardiac modeling and segmentation. A multi-dataset approach was employed, including data from the UK Biobank, MICCAI Multi-Modality Whole Heart Segmentation (MM-WHS) challenge, and clinical datasets of congenital heart disease. Preprocessing steps involved segmentation, intensity normalization, and mesh generation, while the reconstruction was performed using a blend of statistical shape modeling (SSM), graph convolutional networks (GCNs), and progressive GANs.

View Article and Find Full Text PDF

To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation of the choroidal layer was achieved using a deep-learning ResUNet model along with a volumetric smoothing approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!