Sialyltransferase, an enzyme responsible for attaching sialic acid to the cell surface, is reported to play a key role in cancer, making sialyltransferase a potential therapeutic target in drug development. Several methods have been developed to quantify sialic acids in biological samples however limitations exists and quantification in complex cell matrices lack investigation. Hence, this paper outlines a simple method to detect and quantify sialic acids in cancer cells for evaluating sialyltransferase activity of potential therapeutic compounds. An efficient method was developed using a reverse-phase ion-pairing HPLC-UV using triisopropanolamine as the ion-pairing agent with a C18 column. Neu5Ac was successfully eluted with the retention time 6.344 min with a flow rate of 0.4 mL/min. The proposed method was validated appropriately according to the AOAC guidelines (2013). This work demonstrates that the proposed method is not only relatively simple but also cost and time effective compared to pre-existing methods to successfully determine both free and protein-bound Neu5Ac in a complex cancer cell matrix. Furthermore, by applying the proposed method, a statistically significant decrease was observed for both HeLa and HuCCT1 cell lines with the application of deoxycholic acid-a known sialyltransferase inhibitor. Hence, the proposed method seems promisingly applicable to evaluate the effectiveness of potential sialyltransferase inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765648PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0257178PLOS

Publication Analysis

Top Keywords

proposed method
16
potential therapeutic
8
quantify sialic
8
sialic acids
8
method
7
sialyltransferase
5
efficient robust
4
robust hplc
4
hplc method
4
method determine
4

Similar Publications

Background: Opioid medications are important for pain management, but many patients progress to unsafe medication use. With few personalized and accessible behavioral treatment options to reduce potential opioid-related harm, new and innovative patient-centered approaches are urgently needed to fill this gap.

Objective: This study involved the first phase of co-designing a digital brief intervention to reduce the risk of opioid-related harm by investigating the lived experience of chronic noncancer pain (CNCP) in treatment-seeking patients, with a particular focus on opioid therapy experiences.

View Article and Find Full Text PDF

Background And Objectives: Accurate intraoperative assessment of coronal alignment is critical to achieving favorable clinical outcomes in adult spinal deformity surgery. However, surgical positioning creates challenges in predicting standing coronal alignment. Gravity-based plumblines require an upright posture and are not possible intraoperatively.

View Article and Find Full Text PDF

Improved GOA-based fuzzy PI speed control of PMSM with predictive current regulation.

PLoS One

January 2025

Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, Liaoning, China.

To address the susceptibility of conventional vector control systems for permanent magnet synchronous motors (PMSMs) to motor parameter variations and load disturbances, a novel control method combining an improved Grasshopper Optimization Algorithm (GOA) with a variable universe fuzzy Proportional-Integral (PI) controller is proposed, building upon standard fuzzy PI control. First, the diversity of the population and the global exploration capability of the algorithm are enhanced through the integration of the Cauchy mutation strategy and uniform distribution strategy. Subsequently, the fusion of Cauchy mutation and opposition-based learning, along with modifications to the optimal position, further improves the algorithm's ability to escape local optima.

View Article and Find Full Text PDF

A feature-based approach for atlas selection in automatic pelvic segmentation.

PLoS One

January 2025

Department of Radiation Physics, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

Accurate and efficient automatic segmentation is essential for various clinical tasks such as radiotherapy treatment planning. However, atlas-based segmentation still faces challenges due to the lack of representative atlas dataset and the computational limitations of deformation algorithms. In this work, we have proposed an atlas selection procedure (subset atlas grouping approach, MAS-SAGA) which utilized both image similarity and volume features for selecting the best-fitting atlases for contour propagation.

View Article and Find Full Text PDF

Evaluating the dynamic co-evolution and feedback mechanisms within socio-ecological systems is crucial for determining the resilience and sustainability of environmental governance strategies. The grass-livestock system, as a complex entity encompassing livestock nutrition, foraging behavior, vegetation ecology, pastoralists' economic income, and policy interventions, indicates that any change in a single element may trigger a chain reaction within the system. This paper uses a system dynamics approach to construct a simulation model of the grass-livestock system in alpine pastoral areas, simulating the long-term dynamic co-evolution of the socio-ecological system in the Qilian Mountains region of China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!