Deep Learning has become a very promising avenue for magnetic resonance image (MRI) reconstruction. In this work, we explore the potential of unrolled networks for non-Cartesian acquisition settings. We design the NC-PDNet (Non-Cartesian Primal Dual Netwok), the first density-compensated (DCp) unrolled neural network, and validate the need for its key components via an ablation study. Moreover, we conduct some generalizability experiments to test this network in out-of-distribution settings, for example training on knee data and validating on brain data. The results show that NC-PDNet outperforms baseline (U-Net, Deep image prior) models both visually and quantitatively in all settings. In particular, in the 2D multi-coil acquisition scenario, the NC-PDNet provides up to a 1.2 dB improvement in peak signal-to-noise ratio (PSNR) over baseline networks, while also allowing a gain of at least 1dB in PSNR in generalization settings. We provide the open-source implementation of NC-PDNet, and in particular the Non-uniform Fourier Transform in TensorFlow, tested on 2D multi-coil and 3D single-coil k-space data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2022.3144619DOI Listing

Publication Analysis

Top Keywords

mri reconstruction
8
nc-pdnet
5
nc-pdnet density-compensated
4
density-compensated unrolled
4
unrolled network
4
network non-cartesian
4
non-cartesian mri
4
reconstruction deep
4
deep learning
4
learning promising
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!