Volume Projection Imaging from ultrasound data is a promising technique to visualize spine features and diagnose Adolescent Idiopathic Scoliosis. In this paper, we present a novel multi-task framework to reduce the scan noise in volume projection images and to segment different spine features simultaneously, which provides an appealing alternative for intelligent scoliosis assessment in clinical applications. Our proposed framework consists of two streams: i) A noise removal stream based on generative adversarial networks, which aims to achieve effective scan noise removal in a weakly-supervised manner, i.e., without paired noisy-clean samples for learning; ii) A spine segmentation stream, which aims to predict accurate bone masks. To establish the interaction between these two tasks, we propose a selective feature-sharing strategy to transfer only the beneficial features, while filtering out the useless or harmful information. We evaluate our proposed framework on both scan noise removal and spine segmentation tasks. The experimental results demonstrate that our proposed method achieves promising performance on both tasks, which provides an appealing approach to facilitating clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2022.3143953DOI Listing

Publication Analysis

Top Keywords

noise removal
16
spine segmentation
12
volume projection
12
scan noise
12
projection images
8
spine features
8
proposed framework
8
noise
5
joint spine
4
segmentation noise
4

Similar Publications

This paper seeks to enhance the performance of Mel Frequency Cepstral Coefficients (MFCCs) for detecting abnormal heart sounds. Heart sounds are first pre-processed to remove noise and then segmented into S1, systole, S2, and diastole intervals, with thirteen MFCCs estimated from each segment, yielding 52 MFCCs per beat. Finally, MFCCs are used for heart sound classification.

View Article and Find Full Text PDF

When the traditional random forest (RF) algorithm is used to select feature elements in biostatistical data, a large amount of noise data and parameters can affect the importance of the selected feature elements, making the control of feature selection difficult. Therefore, it is a challenge for the traditional RF algorithm to preserve the accuracy of algorithm results in the presence of noise data. Generally, directly removing noise data can result in significant bias in the results.

View Article and Find Full Text PDF

Single-Step Sampling Approach for Unsupervised Anomaly Detection of Brain MRI Using Denoising Diffusion Models.

Int J Biomed Imaging

December 2024

Department of Computer Science & Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE) 576104, Manipal, Karnataka, India.

Generative models, especially diffusion models, have gained traction in image generation for their high-quality image synthesis, surpassing generative adversarial networks (GANs). They have shown to excel in anomaly detection by modeling healthy reference data for scoring anomalies. However, one major disadvantage of these models is its sampling speed, which so far has made it unsuitable for use in time-sensitive scenarios.

View Article and Find Full Text PDF

Estimating baselines of Raman spectra based on transformer and manually annotated data.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Agricultural Technology, Center for Precision Agriculture, Norwegian Institute of Bioeconomy Research (NIBIO), Nylinna 226 2849, Kapp, Norway.

Raman spectroscopy is a powerful and non-invasive analytical method for determining the chemical composition and molecular structure of a wide range of materials, including complex biological tissues. However, the captured signals typically suffer from interferences manifested as noise and baseline, which need to be removed for successful data analysis. Effective baseline correction is critical in quantitative analysis, as it may impact peak signature derivation.

View Article and Find Full Text PDF

Revealing urban area from mobile positioning data.

Sci Rep

December 2024

ANETI Lab, Corvinus Institute for Advanced Studies, Corvinus University of Budapest, Budapest, 1093, Hungary.

Researchers face the trade-off between publishing mobility data along with their papers while protecting the privacy of the individuals. In addition to the anonymization process, other techniques, such as spatial discretization and location concealing or removal, are applied to achieve these dual objectives. The primary research question is whether concealing the observation area is an adequate form of protection or whether human mobility patterns in urban areas are inherently revealing of location.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!