A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamic Picture of Phase Segregation during the Formation of Bicontinuous Concentric Lamellar () Silica. | LitMetric

The thermodynamic picture describing the formation mechanism of bicontinuous concentric lamellar () nanostructured silica particles, silica, was investigated thoroughly. A series of classical kinetics of silica by varying the synthesis time were employed to observe the morphological evolution of silica. The formation mechanism of silica is proposed as the hydrolysis and condensation reactions in the reverse micelle, followed by the phase segregation process. The images of the whole part and the cross-section of silica reveal that silica can be obtained just 30 min after the synthesis starts. The particle morphology evolves from bicontinuous lamellar () morphology, with the absence of the dense part in the center of the particle, to bicontinuous concentric lamellar () morphology. The theoretical part of this study is focused on the phase segregation process of the mixture. This process is divided thermodynamically into several reversible processes based on the reduced Helmholtz free energy state function. The type of the lamellar orientation (i.e., parallel or perpendicular orientation) changed as the stacked lamellae changed in thickness and was followed by the decrease in the free energy. It was merely shown that the segregation of the thin slab of the lamellar polysiloxane stack favors the perpendicular orientation. In contrast, the thick slab of the lamellar polysiloxane stack yields a complex lamellar structure consisting of perpendicular and parallel orientations. A lamellar polymer confined between two planar substrates can experience a topological transformation into a sphere due to an unfavorable environment, i.e., high surface tension. After the topological transformation, lamellae with a perpendicular orientation form bicontinuous lamellae, whereas the complex lamellar structure transforms into a bicontinuous concentric lamellar morphology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02490DOI Listing

Publication Analysis

Top Keywords

bicontinuous concentric
16
concentric lamellar
16
phase segregation
12
lamellar morphology
12
perpendicular orientation
12
lamellar
11
thermodynamic picture
8
silica
8
formation mechanism
8
segregation process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!