Bacillus subtilis is an intestinal probiotic for immune homeostasis and its exopolysaccharide (EPS) is known to possess anti-inflammatory and antioxidant properties. The underlying mechanisms are not yet fully understood. In the present study, we investigated the effects of the EPS (50, 100, 200 mg/kg) on airway inflammation in asthmatic mice. Our results showed that EPS treatment of asthmatic mice significantly alleviated pathological damage in the lungs, remarkably decreased the counts of total inflammatory cells including lymphocytes, and eosinophils in the bronchoalveolar lavage fluid (BALF) and reduced indexes of oxidative damage. Moreover, the expression of type II T-helper cell (Th2) cytokines (interleukin- (IL)4 and -5) subsequent to EPS treatment was found to be dramatically down-regulated in a concentration-dependent manner. Additionally, the EPS treatment reduced JAK1, STAT6 and nuclear factor-κB (NF-κB) expression in the lungs of asthmatic mice. Taken together, these results suggest that the EPS from B. subtilis alleviates asthmatic airway inflammation, which involves the reduction in reactive oxygen species (ROS) and the down-regulation of the STAT6 and NF-κB inflammatory pathways, which can further reduce Th2 cytokine expression and eosinophilic inflammation. Thus, our findings provide a potential mechanism through which the EPS mitigates asthma, suggesting that the EPS could be a potential source of an anti-asthmatic drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799920 | PMC |
http://dx.doi.org/10.1042/BSR20212461 | DOI Listing |
Parasit Vectors
January 2025
School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
Background: A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.
View Article and Find Full Text PDFAllergy
January 2025
Schroeder Allergy and Immunology Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
Allergic reactions to foods are primarily driven by allergen-binding immunoglobulin (Ig)E antibodies. IgE-expressing cells can be generated through direct switching from IgM to IgE or a sequential class switching pathway where activated B cells first switch to an intermediary isotype, most frequently IgG1, and then to IgE. It has been proposed that sequential class switch recombination is involved in augmenting the severity of allergic reactions, generating high affinity IgE, differentiation of IgE plasma cells, and in holding the memory of IgE responses.
View Article and Find Full Text PDFThe levels of biogenesis of lysosome organelles complex 1 subunit 1 (BLOC1S1) control mitochondrial and endolysosome organelle homeostasis and function. Reduced fidelity of these vacuolar organelles is increasingly being recognized as important in instigating cell-autonomous immune cell activation. We reasoned that exploring the role of BLOC1S1 in CD4 T cells, may further advance our understanding of regulatory events linked to mitochondrial and/or endolysosomal function in adaptive immunity.
View Article and Find Full Text PDFIn the Rutaceae family is the biggest among all fruits, tradtionally used for several purposes due to its diverse ethnomedicinal, phytochemical, and pharmacological activities. Different portions of this plant have been used as sedatives and anti-inflammatory medications, as well as to treat coughs, fevers, asthma, diarrhea, ulcers, and diabetes. There is a scientific potential for the methanolic seed extract to contain bioactive compounds, similar to those found in other parts of the plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!