Advancing Artificial Intelligence to Meet Breast Imaging Needs.

Radiology

From the Department of Radiology and Biomedical Imaging, Yale School of Medicine, 333 Cedar St, PO Box 208042, New Haven, CT 06520.

Published: April 2022

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.213101DOI Listing

Publication Analysis

Top Keywords

advancing artificial
4
artificial intelligence
4
intelligence meet
4
meet breast
4
breast imaging
4
advancing
1
intelligence
1
meet
1
breast
1
imaging
1

Similar Publications

This review provides an in-depth exploration of the evolving role of immunotherapy in gastrointestinal (GI) cancers, with a particular focus on immune checkpoint inhibitors (ICIs) and their associated predictive biomarkers. We present a detailed analysis of established biomarkers, such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and the tumor microenvironment (TME), as well as emerging biomarkers, including gut microbiota and Epstein-Barr virus (EBV). The predictive value of these biomarkers in guiding clinical decision-making and optimizing immunotherapy outcomes is thoroughly discussed.

View Article and Find Full Text PDF

While artificial intelligence's (AI's) potential role in enhancing diagnostic accuracy and personalising treatment is well-recognised, its application in evaluating physicians raises critical ethical concerns as well. The paper examines the impact of AI on the 'comparative abilities' exception to informed consent, which currently exempts physicians from disclosing information about the performance of other providers. With AI's ability to generate granular, accurate comparisons of physician metrics, this exception will be challenged, potentially empowering patients to make more informed decisions.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is marked by significant clinical heterogeneity, posing challenges for accurate diagnosis and personalized treatment strategies. Conventional approaches, such as endoscopy and histology, often fail to adequately and accurately predict medium and long-term outcomes, leading to suboptimal patient management. Artificial intelligence (AI) is emerging as a transformative force enabling standardized, accurate, and timely disease assessment and outcome prediction, including therapeutic response.

View Article and Find Full Text PDF

Innovative Construction and Application of Bile Duct Organoids: Unraveling the Complexity of Bile Duct Diseases and Potential Therapeutic Strategies.

Cancer Lett

March 2025

School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China. Electronic address:

The biliary system is crucial for liver function, regulating bile production, secretion, and transport. Dysfunctions within this system can lead to various diseases, such as cholangiopathies and biliary fibrosis, which may progress from benign to malignant states like cholangiocarcinoma. While liver organoid research is well-established and technologically advanced, bile duct organoids (BDOs) offer significant potential.

View Article and Find Full Text PDF

Conjugated polymers (CPs) are considered one of the most important gas-sensing materials due to their unique features, combining the benefits of both metals and semiconductors, along with their outstanding mechanical properties and excellent processability. However, CPs with conventional morphological structures, such as largely amorphous and bulky matrices, face limitations in practical applications because of their inferior charge transport characteristics, low surface area, and insufficient sensitivity. Therefore, the design and development of novel morphological nanostructures in CPs have attracted significant attention as a promising strategy for improving morphological and electrical characteristics, thereby enabling a considerable increase in the sensing performance of corresponding gas sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!